symfit Documentation
Release 0.2

tBulLi

December 06, 2015

Contents

Introduction 3
1.1 Technical Reasons i i e e e 3
Installation 5
2.1 Dependencies e e e e 5
Quick Start 7
3.1 Single Variable Problem 7
3.2 symfit.api eXposes SYMPY.APL . . v v v v v e e e e e e e e e e e e e e e e e e e 7
33 Initial GUESS L e e e e e e e 7
3.4 Multivariable Problem L0 e e e 8
Tutorial 9
4.1 Simple Example e e e e e e e e 9
42 Initial GUESS e e e e e e e e e e e e 9
43 Accessingthe Results L 11
44 Evaluatingthe Model e 11
Fitting Types 13
5.1 Fit(LeastSquares) o i e e e e e e e e e e e e 13
5.2 Likelihood e 13
5.3 Minimize/MaXiMmizZe« o o v vttt e e e e e e e e e e e e 15
Dependencies and Credits 17
Indices and tables 19

symfit Documentation, Release 0.2

Contents:

Contents 1

symfit Documentation, Release 0.2

2 Contents

CHAPTER 1

Introduction

Existing fitting modules are not very pythonic in their API and can be difficult for humans to use. This project aims
to marry the power of scipy.optimize with the readability of SymPy to create a highly readable and easy to use
fitting package which works for projects of any scale.

symfit makes it extremely easy to provide guesses for your parameters and to bound them to a certain range:

a = Parameter (1.0, min=0.0, max=5.0)

To define models to fit to:

x = Variable ()

A = Parameter ()

sig = Parameter (1.0, min=0.0, max=5.0)
x0 = Parameter (1.0, min=0.0)

Gaussian distrubution

model = exp(—(x — x0)*%2/(2 » sig*x2))

And finally, to execute the fit:

fit = Fit (model, xdata, ydata)
fit_result = fit.execute ()

And to evaluate the model using the best fit parameters:

y = model (x=xdata, *+fit_result.params)

For the full code to this or other examples, check the example library here: example-library.

1.1 Technical Reasons

On a more technical note, this symbolic approach turns out to have great technical advantages over using scipy directly.
In order to fit, the algorithm needs the Jacobian: a matrix containing the derivatives of your model in it’s parameters.
Because of the symbolic nature of symfit, this is determined for you on the fly, saving you the trouble of having
to determine the derivatives yourself. Furthermore, having this Jacobian allows good estimation of the errors in your
parameters, something scipy does not always succeed in.

symfit Documentation, Release 0.2

400

350

300

250

200

150

100

50

22

4 Chapter 1. Introduction

CHAPTER 2

Installation

If you are using pip, you can simply run

pip install symfit

from your terminal. If you are using linux and do not use pip, you can download the source from
https://github.com/tBuLi/symfit and install manually.

Are you not on linux and you do not use pip? That’s your own mess.

2.1 Dependencies

pip install sympy
pip install numpy
pip install scipy

https://github.com/tBuLi/symfit

symfit Documentation, Release 0.2

6 Chapter 2. Installation

CHAPTER 3

Quick Start

If you simply want the most important parts about symfit, you came to the right place.

3.1 Single Variable Problem

from symfit.api import Parameter, Variable, exp, Fit

A = Parameter (100, min=0)
b = Parameter ()

x = Variable ()

model = A x exp(x * Db)

xdata = # your 1D xdata. This is a quick start guide, so I'm assuming you know how to gg
ydata = # 1D ydata

fit = Fit (model, xdata, ydata)
fit_result = fit.execute ()

Plot the fit.

The model xhasx to be called by keyword arguments to prevent any ambiguity
y = model (x=xdata, *xfit_result.params)

plt.plot (xdata, vy)

plt.show ()

>t it.

3.2 symfit.api exposes sympy.api

symfit.api exposes the sympy api as well, so mathematical expressions such as exp, sin and pi are importable
from symfit.api as well. For more, read the sympy docs.

3.3 Initial Guess

For fitting to work as desired you should always give a good initial guess for a parameter. The Parameter object
can therefore be initiated with the following keywords:

* value the initial guess value.

* min Minimal value for the parameter.

http://docs.sympy.org

symfit Documentation, Release 0.2

* max Maximal value for the parameter.
e fixed Fix the value of the parameter during the fitting to value.

In the example above, we might change our Parameters to the following after looking at a plot of the data:

‘a = Parameter (value=4, min=3, max=06)

3.4 Multivariable Problem

Let M be the number of variables in your model, and N the number of data point in xdata. Symfit assumes xdata to
be of shape N x M oreven Ny x ... N; x M dimensional, as long as either the first or last axis of the array is of the
same length as the number of variables in your model. Currently it is assumed that the function is not vector valued,
meaning that for every datapoint in xdata, only a single y value is returned. Vector valued functions are on my ToDo
list.

from symfit.api import Parameter, Variable, Fit

= Parameter ()

= Parameter ()

= Variable ()

= Variable()

model = a * X**2 + b *x yx*2

MOoX O

xdata # your NxM data.
ydata = # ydata

fit = Fit (model, xdata, ydata)
fit_result = fit.execute()

Plot the fit.

z = model (x=xdatal[:, 0] y=xdatal:, 1], =*xfit_result.params)
plt.plot (xdata, z)
plt.show ()

8 Chapter 3. Quick Start

CHAPTER 4

Tutorial

4.1 Simple Example

The example below shows how easy it is to define a model that we could fit to.

from symfit.api import Parameter, Variable

a = Parameter ()

b Parameter ()
X Variable ()
model = a » x + b

Lets fit this model to some generated data.

from symfit.api import Fit
import numpy as np

xdata = np.linspace (0, 100, 100) # From 0 to 100 in 100 steps

a_vec = np.random.normal (15.0, scale=2.0, size=(100,))

b_vec = np.random.normal (100.0, scale=2.0, size=(100,))

ydata = a_vec * xdata + b_vec # Point scattered around the line 5 x x + 105

fit = Fit (model, xdata, ydata)
fit_result = fit.execute()

Printing fit_result will give a full report on the values for every parameter, including the uncertainty, and quality
of the fit.

4.2 Initial Guess

For fitting to work as desired you should always give a good initial guess for a parameter. The Parameter object
can therefore be initiated with the following keywords:

e value the initial guess value.

* min Minimal value for the parameter.

* max Maximal value for the parameter.

» fixed Fix the value of the parameter during the fitting to value.

In the example above, we might change our Parameter s to the following after looking at a plot of the data:

symfit Documentation, Release 0.2

2000

1500

1000

500

20

40

60

80

100

10

Chapter 4. Tutorial

symfit Documentation, Release 0.2

’a = Parameter (value=4, min=3, max=06)

4.3 Accessing the Results

A call to Fit.execute () returns a FitResults instance. This object holds all information about the fit. The
fitting process does not modify the Parameter objects. In this example, a.value will still be 4.0 and not the
value we obtain after fitting. To get the value of fit paramaters we can do:

>>> print (fit_result.params.a)

>>> 14.66946...

>>> print (fit_result.params.a_stdev)
>>> 0.3367571...

>>> print (fit_result.params.b)

>>> 104.6558...

>>> print (fit_result.params.b_stdev)
>>> 19.49172...

>>> print (fit_result.r_squared)

>>> 0.950890866472

For more FitResults, see the API docs. (Under construction.)

4.4 Evaluating the Model

With these parameters, we could now evaluate the model with these parameters so we can make a plot of it. In order
to do this, we simply call the model with these values:

import matplotlib.pyplot as plt

y = model (x=xdata, a=fit_result.params.a, b=fit_result.params.b)
plt.plot (xdata, vy)
plt.show ()

The model has to be called by keyword arguments to prevent any ambiguity. So the following does not work:

‘y = model (xdata, fit_result.params.a, fit_result.params.Db)

To make life easier, there is a nice shorthand notation to immediately use a fit result:

‘y = model (x=xdata, **fit_result.paramns)

This unpacks the .params object as a dict. For more info view ParameterDict.

4.3. Accessing the Results 11

symfit Documentation, Release 0.2

2000

1500

1000

500

0 20 40 60 80 100

12 Chapter 4. Tutorial

CHAPTER 5

Fitting Types

5.1 Fit (LeastSquares)

The default fitting object does least-squares fitting:

from symfit.api import Parameter, Variable, Fit
import numpy as np

Define a model to fit to.
= Parameter ()

= Parameter ()

= Variable ()

model = a » x + b

X O o =

Generate some data

xdata = np.linspace (0, 100, 100) # From 0 to 100 in 100 steps

a_vec = np.random.normal (15.0, scale=2.0, size=(100,))

b_vec = np.random.normal (100.0, scale=2.0, size=(100,))

ydata = a_vec x xdata + b_vec # Point scattered around the line 5 % x + 105

fit = Fit (model, xdata, ydata)
fit_result = fit.execute()

Fit currently simply wraps Least Squares. This might be changed in the future to it determining which fit would
work best for the current data and then just trying the best option.

5.2 Likelihood

Given a dataset and a model, what values should the model’s parameters have to make the observed data most likely?
This is the principle of maximum likelihood and the question the Likelihood object can answer for you.

Example:

from symfit.api import Parameter, Variable, Likelihood, exp
import numpy as np

Define the model for an exponential distribution (numpy style)
beta = Parameter ()

x = Variable ()

model = (1 / beta) » exp(-x / beta)

13

symfit Documentation, Release 0.2

2000

1500

1000

500

0 20 40 60 80 100

14 Chapter 5. Fitting Types

symfit Documentation, Release 0.2

Draw 100 samples from an exponential distribution with beta=5.5
data = np.random.exponential (5.5, 100)

Do the fitting!
fit = Likelihood(model, data)
fit_result = fit.execute()

Off-course fit_result is a normal FitResults object. Because scipy.optimize.minimize is used to
do the actual work, bounds on parameters, and even constraints are supported. For more information on this subject,
check out symfit‘s Minimize.

5.3 Minimize/Maximize

Minimize or Maximize a model subject to bounds and/or constraints. It is a wrapper to
scipy.optimize.minimize. As an example I present an example from the scipy docs.

Suppose we want to maximize the following function:

flz,y) = 2zy + 2z — 2* — 2°

Subject to the following constraits:

2 —y=0
y—1>=0
In SciPy code the following lines are needed:
def func(x, sign=1.0):
""" Objective function """
return signx (2*xx[0]*x[1] + 2xx[0] — x[0]*x%2 — 2xx[1]*x%2)

def func_deriv(x, sign=1.0):
""r Derivative of objective function """
dfdx0 = signx (-2xx[0] + 2xx[1] + 2)
dfdxl = sign* (2+xx[0] — 4*x[1])
return np.array ([dfdx0, dfdxl])

cons = ({'type': 'eq',
"fun' : lambda x: np.array ([x[0]**3 - x[1]1]),
'"Jac' : lambda x: np.array([3.0x(x[0]*%x2.0), -1.0])1},
{'type': 'ineq',
'fun' : lambda x: np.array([x[1] - 11]),
'Jac' : lambda x: np.array([0.0, 1.0])1})
res = minimize (func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,

constraints=cons, method='SLSQP', options={'disp': True})

Takes a couple of readthroughs to make sense, doesn’t it? Let’s do the same problem in symfit:

x = Parameter ()
\ Parameter ()
model = 2%xX*xy + 2%X — X**2 —2xyx*2
constraints = [
X*x*x3 = == 0,
y — 1 >0,

5.3. Minimize/Maximize 15

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

symfit Documentation, Release 0.2

fit = Maximize (model, constraints=constraints)
fit_result = fit.execute ()

Done! symfit will determine all derivatives automatically, no need for you to think about it.

Warning: You might have noticed that x and y are Parameter‘s in the above problem, which may stike
you as weird. However, it makes perfect sence because in this problem they are parameters to be optimised, not
variables. Furthermore, this way of defining it is consistent with the treatment of Variable‘s and Parameter"s
in symfit. Be aware of this when using these objects, as the whole process won’t work otherwise.

16 Chapter 5. Fitting Types

CHAPTER 6

Dependencies and Credits

Always pay credit where credit’s due. symfit uses the following projects to make it’s sexy interface possible:
* leastsgbound-scipy is used to bound parameters to a given domain.

» seaborn was used to make the beautifully styled plots in the example code. All you have to do to sexify your
matplotlib plot’s is import seaborn, even if you don’t use it’s special plotting facilities, so I highly recommend
it.

e numpy and scipy are off-course used to do efficient data manipulation.

* sympy is used for the manipulation of the symbolic expressions that give this project it’s high readability.

17

https://github.com/jjhelmus/leastsqbound-scipy
http://stanford.edu/~mwaskom/software/seaborn/
http://docs.scipy.org/doc/
http://docs.sympy.org/latest/index.html

symfit Documentation, Release 0.2

18 Chapter 6. Dependencies and Credits

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

19

	Introduction
	Technical Reasons

	Installation
	Dependencies

	Quick Start
	Single Variable Problem
	symfit.api exposes sympy.api
	Initial Guess
	Multivariable Problem

	Tutorial
	Simple Example
	Initial Guess
	Accessing the Results
	Evaluating the Model

	Fitting Types
	Fit (LeastSquares)
	Likelihood
	Minimize/Maximize

	Dependencies and Credits
	Indices and tables

