

Welcome to symfit’s documentation!

Contents:

	Introduction
	Technical Reasons

	Installation
	Contrib module

	Dependencies

	Tutorial
	Simple Example

	Initial Guess

	Accessing the Results

	Evaluating the Model

	Named Models

	symfit exposes sympy.api

	Fitting Types
	Fit (Least Squares)

	Constrained Least Squares Fit

	(Non)LinearLeastSquares

	Likelihood

	Minimize/Maximize

	ODE Fitting

	Fitting multiple datasets

	Global Minimization

	Constrained Basin-Hopping

	Advanced usage

	What if the model is unnamed?

	Style Guide & Best Practices
	Style Guide

	Best Practices

	Technical Notes
	On Likelihood Fitting

	On Standard Deviations

	Comparison to Mathematica

	Internal API Structure

	Dependencies and Credits

	Examples
	Model Examples

	Interactive Guess Module

	Module Documentation
	Fit

	Argument

	Operators

	Fit Results

	Minimizers

	Objectives

	Support

	Distributions

	Contrib

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Existing fitting modules are not very pythonic in their API and can be
difficult for humans to use. This project aims to marry the power of
scipy.optimize [https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize] with the readability of sympy [https://docs.sympy.org/latest/modules/matrices/immutablematrices.html#module-sympy] to create a highly
readable and easy to use fitting package which works for projects of any scale.

symfit makes it extremely easy to provide guesses for your parameters
and to bound them to a certain range:

a = Parameter('a', 1.0, min=0.0, max=5.0)

To define models to fit to:

x = Variable('x')
A = Parameter('A')
sig = Parameter('sig', 1.0, min=0.0, max=5.0)
x0 = Parameter('x0', 1.0, min=0.0)

Gaussian distrubution
model = A * exp(-(x - x0)**2/(2 * sig**2))

And finally, to execute the fit:

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

And to evaluate the model using the best fit parameters:

y = model(x=xdata, **fit_result.params)

[image: Gaussian Data]

As your models become more complicated, symfit really comes into it’s
own. For example, vector valued functions are both easy to define and beautiful
to look at:

model = {
 y_1: x**2,
 y_2: 2*x
}

And constrained maximization has never been this easy:

x, y = parameters('x, y')

model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [
 Eq(x**3 - y, 0), # Eq: ==
 Ge(y - 1, 0), # Ge: >=
]

fit = Fit(- model, constraints=constraints)
fit_result = fit.execute()

Technical Reasons

On a more technical note, this symbolic approach turns out to have great
technical advantages over using scipy directly. In order to fit, the algorithm
needs the Jacobian: a matrix containing the derivatives of your model in it’s
parameters. Because of the symbolic nature of symfit, this is determined
for you on the fly, saving you the trouble of having to determine the
derivatives yourself. Furthermore, having this Jacobian allows good estimation
of the errors in your parameters, something scipy [https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize] does
not always succeed in.

Installation

If you are using pip, you can simply run

pip install symfit

from your terminal. If you are using linux and do not use pip, you can download
the source from https://github.com/tBuLi/symfit and install manually.

Are you not on linux and you do not use pip? That’s your own mess.

Contrib module

To also install the dependencies of 3rd party contrib modules such as
interactive guesses, install symfit using:

pip install symfit[contrib]

Dependencies

pip install sympy
pip install numpy
pip install scipy

Tutorial

Simple Example

The example below shows how easy it is to define a model that we could fit to.

from symfit import Parameter, Variable

a = Parameter('a')
b = Parameter('b')
x = Variable('x')
model = a * x + b

Lets fit this model to some generated data.

from symfit import Fit
import numpy as np

xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
ydata = a_vec * xdata + b_vec # Point scattered around the line 5 * x + 105

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

[image: Linear Model Fit Data]

Printing fit_result will give a full report on the values for every
parameter, including the uncertainty, and quality of the fit.

Initial Guess

For fitting to work as desired you should always give a good initial guess for
a parameter. The Parameter object can therefore
be initiated with the following keywords:

	value the initial guess value. Defaults to 1.

	min Minimal value for the parameter.

	max Maximal value for the parameter.

	fixed Whether the parameter’s value can vary during fitting.

In the example above, we might change our
Parameter’s to the following after looking at a
plot of the data:

k = Parameter('k', value=4, min=3, max=6)

a, b = parameters('a, b')
a.value = 60
a.fixed = True

Accessing the Results

A call to Fit.execute returns a
FitResults instance. This object holds all information
about the fit. The fitting process does not modify the
Parameter objects. In the above example,
a.value will still be 60 and not the value we obtain after fitting. To
get the value of fit parameters we can do:

>>> print(fit_result.value(a))
>>> 14.66946...
>>> print(fit_result.stdev(a))
>>> 0.3367571...
>>> print(fit_result.value(b))
>>> 104.6558...
>>> print(fit_result.stdev(b))
>>> 19.49172...
>>> print(fit_result.r_squared)
>>> 0.950890866472

For more FitResults, see the Module Documentation.

Evaluating the Model

With these parameters, we could now evaluate the model with these parameters so
we can make a plot of it. In order to do this, we simply call the model with
these values:

import matplotlib.pyplot as plt

y = model(x=xdata, a=fit_result.value(a), b=fit_result.value(b))
plt.plot(xdata, y)
plt.show()

[image: Linear Model Fit]

The model has to be called by keyword arguments to prevent any ambiguity. So
the following does not work:

y = model(xdata, fit_result.value(a), fit_result.value(b))

To make life easier, there is a nice shorthand notation to immediately use a
fit result:

y = model(x=xdata, **fit_result.params)

This immediately unpacks an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] containing the optimized fit
parameters.

Named Models

More complicated models are also relatively easy to deal with by using named
models. Let’s try our luck with a bivariate normal distribution:

from symfit import parameters, variables, exp, pi, sqrt

x, y, p = variables('x, y, p')
mu_x, mu_y, sig_x, sig_y, rho = parameters('mu_x, mu_y, sig_x, sig_y, rho')

z = (
 (x - mu_x)**2/sig_x**2
 + (y - mu_y)**2/sig_y**2
 - 2 * rho * (x - mu_x) * (y - mu_y)/(sig_x * sig_y)
)
model = {
 p: exp(
 - z / (2 * (1 - rho**2)))
 / (2 * pi * sig_x * sig_y * sqrt(1 - rho**2)
)
}

fit = Fit(model, x=xdata, y=ydata, p=pdata)

By using the magic of named models, the flow of information is still relatively
clear, even with such a complicated function.

This syntax also supports vector valued functions:

model = {y_1: a * x**2, y_2: 2 * x * b}

One thing to note about such models is that now model(x=xdata) obviously no
longer works as type(model) == dict. There is a preferred way to resolve
this. If any kind of fitting object has been initiated, it will have a
.model atribute containing an instance of
Model. This can again be called:

a, b = parameters('a, b')
y_1, y_2, x = variables('y_1, y_2, x')

model = {y_1: a * x**2, y_2: 2 * x * b}
fit = Fit(model, x=xdata, y_1=y_data1, y_2=y_data2)
fit_result = fit.execute()

y_1_result, y_2_result = fit.model(x=xdata, **fit_result.params)

This returns a namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple], with the components evaluated.
So through the magic of tuple unpacking, y_1 and y_2 contain the
evaluated fit. The dependent variables will be ordered alphabetically in the
returned namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple]. Alternatively, the unpacking can be
performed explicitly.

If for some reason no Fit is initiated you can make a
Model object yourself:

model = Model(model_dict)
y_1_result, y_2_result = model(x=xdata, a=2.4, b=0.1)

or equivalently:

outcome = model(x=xdata, a=2.4, b=0.1)
y_1_result = outcome.y_1
y_2_result = outcome.y_2

symfit exposes sympy.api

symfit exposes the sympy [http://docs.sympy.org/latest/] api as well,
so mathematical expressions such as exp [https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.exponential.exp],
sin [https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.trigonometric.sin] and Pi [https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Pi]
are importable from symfit as well. For more, read the
sympy docs [http://docs.sympy.org].

Fitting Types

Fit (Least Squares)

The default fitting object does least-squares fitting:

from symfit import parameters, variables, Fit
import numpy as np

Define a model to fit to.
a, b = parameters('a, b')
x = variables('x')
model = a * x + b

Generate some data
xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
Point scattered around the line 5 * x + 105
ydata = a_vec * xdata + b_vec

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

[image: Linear Model Fit Data]

The Fit object also supports standard deviations. In
order to provide these, it’s nicer to use a named model:

a, b = parameters('a, b')
x, y = variables('x, y')
model = {y: a * x + b}

fit = Fit(model, x=xdata, y=ydata, sigma_y=sigma)

Warning

symfit assumes these sigma to be from measurement errors by
default, and not just as a relative weight. This means the standard
deviations on parameters are calculated assuming the absolute size of sigma
is significant. This is the case for measurement errors and therefore for
most use cases symfit was designed for. If you only want to use the
sigma for relative weights, then you can use absolute_sigma=False as a
keyword argument.

Please note that this is the opposite of the convention used by scipy’s
curve_fit() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit]. Looking through their mailing list this
seems to have been implemented the opposite way for historical reasons, and
was understandably never changed so as not to loose backwards compatibility.
Since this is a new project, we don’t have that problem.

Constrained Least Squares Fit

The Fit takes a constraints keyword; a list of
relationships between the parameters that has to be respected. As an example of
fitting with constraints, we could imagine fitting the angles of a triangle:

a, b, c = parameters('a, b, c')
a_i, b_i, c_i = variables('a_i, b_i, c_i')

model = {a_i: a, b_i: b, c_i: c}

data = np.array([
 [10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
 [102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
 [71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],
])

fit = Fit(
 model=model,
 a_i=data[0],
 b_i=data[1],
 c_i=data[2],
 constraints=[Equality(a + b + c, 180)]
)
fit_result = fit.execute()

The line constraints=[Equality(a + b + c, 180)] ensures the our basic
knowledge of geometry is respected despite my sloppy measurements.

Note

Under the hood, a different Minimizer is used to perform a
constrained fit. Fit tries to select the
right Minimizer based on the problem you present it with.
See Fit for more.

(Non)LinearLeastSquares

The LinearLeastSquares implements the analytical
solution to Least Squares fitting. When your model is linear in it’s parameters,
consider using this rather than the default
Fit since this gives the exact
solution in one step, no iteration and no guesses needed.

NonLinearLeastSquares is the generalization to
non-linear models. It works by approximating the model by a linear one around
the value of your guesses and repeating that process iteratively. This process
is therefore very sensitive to getting good initial guesses.

Notes on these objects:

	Use NonLinearLeastSquares instead of
LinearLeastSquares unless you have a reason not to.
NonLinearLeastSquares will behave exactly the same
as LinearLeastSquares when the model is linear.

	Bounds are currently ignored by both. This is because for linear models there
can only be one solution.
For non-linear models it simply hasn’t been considered yet.

	When performance matters, use Fit
instead of NonLinearLeastSquares.
These analytical objects are implemented in pure python and are therefore
massively outgunned by Fit which is ultimately a
wrapper to efficient numerical methods such as MINPACK of BFGS implemented in
Fortran.

Likelihood

Given a dataset and a model, what values should the model’s parameters have to
make the observed data most likely? This is the principle of maximum likelihood
and the question the Likelihood object can answer for you.

Example:

from symfit import Parameter, Variable, exp
from symfit.core.objectives import LogLikelihood
import numpy as np

Define the model for an exponential distribution (numpy style)
beta = Parameter('beta')
x = Variable('x')
model = (1 / beta) * exp(-x / beta)

Draw 100 samples from an exponential distribution with beta=5.5
data = np.random.exponential(5.5, 100)

Do the fitting!
fit = Fit(model, data, objective=LogLikelihood)
fit_result = fit.execute()

fit_result is a normal FitResults object.
As always, bounds on parameters and even constraints are supported.

Minimize/Maximize

Minimize or Maximize a model subject to bounds and/or constraints. As an example
I present an example from the
scipy docs [https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html].

Suppose we want to maximize the following function:

\[f(x,y) = 2xy + 2x - x^2 - 2y^2\]

Subject to the following constraints:

\[x^3 - y = 0\]

\[y - 1 >= 0\]

In SciPy code the following lines are needed:

def func(x, sign=1.0):
 """ Objective function """
 return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

def func_deriv(x, sign=1.0):
 """ Derivative of objective function """
 dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
 dfdx1 = sign*(2*x[0] - 4*x[1])
 return np.array([dfdx0, dfdx1])

cons = ({'type': 'eq',
 'fun' : lambda x: np.array([x[0]**3 - x[1]]),
 'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
 {'type': 'ineq',
 'fun' : lambda x: np.array([x[1] - 1]),
 'jac' : lambda x: np.array([0.0, 1.0])})

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
 constraints=cons, method='SLSQP', options={'disp': True})

Takes a couple of read-throughs to make sense, doesn’t it? Let’s do the same
problem in symfit:

from symfit import parameters, Maximize, Eq, Ge

x, y = parameters('x, y')
model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [
 Eq(x**3 - y, 0),
 Ge(y - 1, 0),
]

fit = Fit(- model, constraints=constraints)
fit_result = fit.execute()

Done! symfit will determine all derivatives automatically, no need for
you to think about it. Notice the minus sign in the call to Fit. This is
because Fit will always minimize, so in order to achieve maximization we should
minimize - model.

Warning

You might have noticed that x and y are
Parameter’s in the above problem, which may
strike you as weird. However, it makes perfect sense because in this problem
they are parameters to be optimised, not independent variables. Furthermore,
this way of defining it is consistent with the treatment of
Variable’s and
Parameter’s in symfit. Be aware of this
when minimizing such problems, as the whole process won’t work otherwise.

ODE Fitting

Fitting to a system of ordinary differential equations (ODEs) is also
remarkedly simple with symfit. Let’s do a simple example from reaction
kinetics. Suppose we have a reaction A + A -> B with rate constant \(k\).
We then need the following system of rate equations:

\[\begin{align}\begin{aligned}\frac{dA}{dt} = -k A^2\\\frac{dB}{dt} = k A^2\end{aligned}\end{align} \]

In symfit, this becomes:

model_dict = {
 D(a, t): - k * a**2,
 D(b, t): k * a**2,
}

We see that the symfit code is already very readable. Let’s do a fit to
this:

tdata = np.array([10, 26, 44, 70, 120])
adata = 10e-4 * np.array([44, 34, 27, 20, 14])
a, b, t = variables('a, b, t')
k = Parameter('k', 0.1)
a0 = 54 * 10e-4

model_dict = {
 D(a, t): - k * a**2,
 D(b, t): k * a**2,
}

ode_model = ODEModel(model_dict, initial={t: 0.0, a: a0, b: 0.0})

fit = Fit(ode_model, t=tdata, a=adata, b=None)
fit_result = fit.execute()

That’s it! An ODEModel behaves just like any other
model object, so Fit knows how to deal with it! Note
that since we don’t know the concentration of B, we explicitly set b=None
when calling Fit so it will be ignored.

Warning

Fitting to ODEs is extremely difficult from an algorithmic point
of view, since these systems are usually very sensitive to the parameters.
Using (very) good initial guesses for the parameters and initial values is
critical.

Upon every iteration of performing the fit the ODEModel is integrated again from
the initial point using the new guesses for the parameters.

We can plot it just like always:

Generate some data
tvec = np.linspace(0, 500, 1000)

A, B = ode_model(t=tvec, **fit_result.params)
plt.plot(tvec, A, label='[A]')
plt.plot(tvec, B, label='[B]')
plt.scatter(tdata, adata)
plt.legend()
plt.show()

[image: Linear Model Fit Data]

As an example of the power of symfit’s ODE syntax, let’s have a look at
a system with 2 equilibria: compound AA + B <-> AAB and AAB + B <-> BAAB.

In symfit these can be implemented as:

AA, B, AAB, BAAB, t = variables('AA, B, AAB, BAAB, t')
k, p, l, m = parameters('k, p, l, m')

AA_0 = 10 # Some made up initial amound of [AA]
B = AA_0 - BAAB + AA # [B] is not independent.

model_dict = {
 D(BAAB, t): l * AAB * B - m * BAAB,
 D(AAB, t): k * A * B - p * AAB - l * AAB * B + m * BAAB,
 D(A, t): - k * A * B + p * AAB,
}

The result is as readable as one can reasonably expect from a multicomponent
system (and while using chemical notation).
Let’s plot the model for some kinetics constants:

model = ODEModel(model_dict, initial={t: 0.0, AA: AA_0, AAB: 0.0, BAAB: 0.0})

Generate some data
tdata = np.linspace(0, 3, 1000)
Eval the normal way.
AA, AAB, BAAB = model(t=tdata, k=0.1, l=0.2, m=0.3, p=0.3)

plt.plot(tdata, AA, color='red', label='[AA]')
plt.plot(tdata, AAB, color='blue', label='[AAB]')
plt.plot(tdata, BAAB, color='green', label='[BAAB]')
plt.plot(tdata, B(BAAB=BAAB, AA=AA), color='pink', label='[B]')
plt.plot(tdata, AA + AAB + BAAB, color='black', label='total')
plt.legend()
plt.show()

[image: ODE integration]

More common examples, such as dampened harmonic oscillators also work as expected:

Oscillator strength
k = Parameter('k')
Mass, just there for the physics
m = 1
Dampening factor
gamma = Parameter('gamma')

x, v, t = symfit.variables('x, v, t')

Define the force based on Hooke's law, and dampening
a = (-k * x - gamma * v)/m
model_dict = {
 D(x, t): v,
 D(v, t): a,
}
ode_model = ODEModel(model_dict, initial={t: 0, v: 0, x: 1})

Let's create some data...
times = np.linspace(0, 15, 150)
data = ode_model(times, k=11, gamma=0.9, m=m.value).x
... and add some noise to it.
noise = np.random.normal(1, 0.1, data.shape) # 10% error
data *= noise

fit = Fit(ode_model, t=times, x=data)
fit_result = fit.execute()

Note

Evaluating the model above will produce a named tuple with values for
both x and v. Since we are only interested in the values for x,
we immediately select it with .x.

[image: Dampened harmonic oscillator]

Fitting multiple datasets

A common fitting problem is to fit to multiple datasets. This is sometimes
referred to as global fitting. In such fits parameters might be shared
between the fits to the different datasets. The same syntax used for ODE
fitting makes this problem very easy to solve in symfit.

As a simple example, suppose we have two datasets measuring exponential decay,
with the same background, but different amplitude and decay rate.

\[f(x) = y_0 + a * e^{- b * x}\]

In order to fit to this, we define the following model:

x_1, x_2, y_1, y_2 = variables('x_1, x_2, y_1, y_2')
y0, a_1, a_2, b_1, b_2 = parameters('y0, a_1, a_2, b_1, b_2')

model = Model({
 y_1: y0 + a_1 * exp(- b_1 * x_1),
 y_2: y0 + a_2 * exp(- b_2 * x_2),
})

Note that y0 is shared between the components. Fitting is then done in the
normal way:

fit = Fit(model, x_1=xdata1, x_2=xdata2, y_1=ydata1, y_2=ydata2)
fit_result = fit.execute()

[image: ODE integration]

Any Model that comes to mind is fair game. Behind the scenes symfit
will build a least squares function where the residues of all the components
are added squared, ready to be minimized. Unlike in the above example, the
x-axis does not even have to be shared between the components.

Warning

The regression coefficient is not properly defined for vector-valued models,
but it is still listed!
Until this is fixed, please recalculate it on your own for every component
using the bestfit parameters.

Do not cite the overall \(R^2\) given by symfit.

Global Minimization

Very often, there are multiple solutions to a fitting (or minimisation)
problem. These are local minima of the objective function. The best solution of
course is the global minimum, but most minimization algorithms will only find a
local minimum, and thus the answer you get will depend on the initial values of
your parameters. This can be incredibly annoying if you have no further
knowledge about your system.

Luckily, global minimizers exist which are not influenced by the initial
guesses for your parameters. In symfit, two such algorithms from scipy
have been wrapped for this pourpose. Firstly, the
differential_evolution() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution] algorithm from scipy is
wrapped as DifferentialEvolution. Secondly,
the basinhopping() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping] algorithm is available as
BasinHopping. To use these minimizers,
just tell Fit:

from symfit import Parameter, Variable, Model, Fit
from symfit.core.minimizers import DifferentialEvolution

x = Parameter('x')
x.min, x.max = -100, 100
x.value = -2.5
y = Variable('y')

model = Model({y: x**4 - 10 * x**2 - x}) # Skewed Mexican hat
fit = Fit(model, minimizer=DifferentialEvolution)
fit_result = fit.execute()

However, due to how this algorithm works, it’s not great at finding the exact
minimum (but it will find it if given enough time). You can work around this by
“chaining” minimizers: first run a global minimization to (hopefully) get close
to your answer, and then polish it off using a local minimizer:

fit = Fit(model, minimizer=[DifferentialEvolution, BFGS])

Note

Global minimizers such as differential evolution and basin-hopping are
rather sensitive to their hyperparameters. You might
need to play with those to get appropriate results, e.g.:

fit.execute(DifferentialEvolution={'popsize': 20, 'recombination': 0.9})

Note

There is no way to guarantee that the minimum found is actually the global
minimum. Unfortunately there is no way around this. Therefore, you should
always critically inspect the results.

Constrained Basin-Hopping

Worthy of special mention is the ease with which constraints or bounds can be
added to symfit.core.minimizers.BasinHopping when used through the
symfit.core.fit.Fit interface. As a very simple example, we shall
compare to an example from the scipy docs:

import numpy as np
from scipy.optimize import basinhopping

def func2d(x):
 f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
 df = np.zeros(2)
 df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
 df[1] = 2. * x[1] + 0.2
 return f, df

minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
x0 = [1.0, 1.0]
ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, niter=200)

Let’s compare to the same functionality in symfit:

import numpy as np
from symfit.core.minimizers import BasinHopping
from symfit import parameters, Fit, cos

x0 = [1.0, 1.0]
x1, x2 = parameters('x1, x2', value=x0)

model = cos(14.5 * x1 - 0.3) + (x2 + 0.2) * x2 + (x1 + 0.2) * x1

fit = Fit(model, minimizer=BasinHopping)
fit_result = fit.execute(niter=200)

No minimizer_kwargs have to be provided, as symfit will automatically
compute and provide the jacobian and select a minimizer. In this case, symfit
will choose BFGS. When bounds are provided, symfit will switch to
using L-BFGS-B instead. Setting bounds is as simple as:

x1.min = 0.0
x1.max = 100.0

However, the real strength of the symfit syntax lies in providing constraints:

constraints = [Eq(x1, x2)]
fit = Fit(model, minimizer=BasinHopping, constraints=constraints)

This artificial example will make sure x1 == x2 after fitting. If you have
read the Minimize/Maximize section, you will know how much work this
would be in pure scipy.

Advanced usage

In general, the separate components of the model can be whatever you need them
to be. You can mix and match which variables and parameters should be coupled
and decoupled ad lib. Some examples are given below.

Same parameters and same function, different (in)dependent variables:

datasets = [data_1, data_2, data_3, data_4, data_5, data_6]

xs = variables('x_1, x_2, x_3, x_4, x_5, x_6')
ys = variables('y_1, y_2, y_3, y_4, y_5, y_6')
zs = variables(', '.join('z_{}'.format(i) for i in range(1, 7)))
a, b = parameters('a, b')

model_dict = {
 z: a/(y * b) * exp(- a * x)
 for x, y, z in zip(xs, ys, zs)
}

What if the model is unnamed?

Then you’ll have to use the ordering. Variables throughout symfit’s
objects are internally ordered in the following way: first independent
variables, then dependent variables, then sigma variables, and lastly
parameters when applicable. Within each group alphabetical ordering applies.

It is therefore always possible to assign data to variables in an unambiguous
way using this ordering. For example:

fit = Fit(model, x_data, y_data, sigma_y_data)

Style Guide & Best Practices

Style Guide

Anything Raymond Hettinger says wins the argument until I have time to write a
proper style guide.

Best Practices

	It is recommended to always use named models. So not:

model = a * x**2
fit = Fit(model, xdata, ydata)

but:

model = {y: a * x**2}
fit = Fit(model, x=xdata, y=ydata)

In this simple example the two are equivalent but for multidimentional data
using ordered arguments can become ambiguous and difficult to read. To
increase readability, it is therefore recommended to always use named models.

	Evaluating a (vector valued) model returns a namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple].
You can access the elements by either tuple unpacking, or by using the
variable names. Note that if you use tuple unpacking, the results will be
ordered alphabetically. The following:

model = Model({y_1: x**2, y_2: x**3})
sol_1, sol_2 = model(x=xdata)

is therefore equivalent to:

model = Model({y_1: x**2, y_2: x**3})
solutions = model(x=xdata)
sol_1 = solutions.y_1
sol_2 = solutions.y_2

Using numerical indexing (or something similar) is not recommended as it is
less readable than the options given above:

sol_1 = model(x=xdata)[0]

Technical Notes

Essays on mathematical and implementation details.

	On Likelihood Fitting

	On Standard Deviations
	Analytical Example

	Comparison to Mathematica

	Internal API Structure
	Fitting 101

	Objectives

	Minimizers

	Example

On Likelihood Fitting

The LogLikelihood objective function should be
used to perform log-likelihood maximization. The
__call__()
and eval_jacobian() definitions have
been changed to facilitate what one would expect from Likelihood fitting:

__call__ gives the value of log-likelihood at the given values of
\(\vec{p}\) and \(\vec{x}_i\), where \(\vec{p}\) is a shorthand
notation for all parameter, and \(\vec{x}_i\) the same shorthand for all
independent variables.

\[\log{L(\vec{p}|\vec{x}_i)} = \sum_{i=1}^{N} \log{f(\vec{p}|\vec{x}_i)}\]

eval_jacobian() gives the derivative
with respect to every parameter of the log-likelihood:

\[\nabla_{\vec{p}} \log{L(\vec{p}|\vec{x}_i)} = \sum_{i=1}^{N}
\frac{1}{f(\vec{p}|\vec{x}_i)} \nabla_{\vec{p}} f(\vec{p}|\vec{x}_i)\]

Where \(\nabla_{\vec{p}}\) is the derivative with respect to all parameters
\(\vec{p}\). The function therefore returns a vector of length len(p)
containing the Jacobian evaluated at the given values of \(\vec{p}\) and
\(\vec{x}\).

On Standard Deviations

This essay is meant as a reflection on the implementation of Standard Deviations
and/or measurement errors in symfit. Although reading this essay in it’s
entirely will only be interesting to a select few, I urge anyone who uses
symfit to read the following summarizing bullet points, as symfit
is not backward-compatible with scipy.

	standard deviations are assumed to be measurement errors by default, not
relative weights. This is the opposite of the scipy definition. Set
absolute_sigma=False when calling Fit to get
the scipy behavior.

Analytical Example

The implementation of standard deviations should be in agreement with cases to
which the analytical solution is known. symfit was build such that this
is true. Let’s follow the example outlined by [taldcroft]. We’ll be sampling
from a normal distribution with \(\mu = 0.0\) and varying \(\sigma\).
It can be shown that given a sample from such a distribution:

\[\mu = 0.0\]

\[\sigma_{\mu} = \frac{\sigma}{\sqrt{N}}\]

where N is the size of the sample. We see that the error in the sample mean
scales with the \(\sigma\) of the distribution.

In order to reproduce this with symfit, we recognize that determining
the avarage of a set of numbers is the same as fitting to a constant. Therefore
we will fit to samples generated from distributions with \(\sigma = 1.0\)
and \(\sigma = 10.0\) and check if this matches the analytical values.
Let’s set \(N = 10000\).

N = 10000
sigma = 10.0
np.random.seed(10)
yn = np.random.normal(size=N, scale=sigma)

a = Parameter('a')
y = Variable('y')
model = {y: a}

fit = Fit(model, y=yn, sigma_y=sigma)
fit_result = fit.execute()

fit_no_sigma = Fit(model, y=yn)
fit_result_no_sigma = fit_no_sigma.execute()

This gives the following results:

	a = 5.102056e-02 ± 1.000000e-01 when sigma_y is provided. This matches
the analytical prediction.

	a = 5.102056e-02 ± 9.897135e-02 without sigma_y provided. This is
incorrect.

If we run the above code example with sigma = 1.0, we get the following
results:

	a = 5.102056e-03 ± 9.897135e-03 when sigma_y is provided. This matches
the analytical prediction.

	a = 5.102056e-03 ± 9.897135e-03 without sigma_y provided. This is also
correct, since providing no weights is the same as setting the weights to 1.

To conclude, if symfit is provided with the standard deviations, it will
give the expected result by default. As shown in [taldcroft] and
symfit’s tests, scipy.optimize.curve_fit() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit] has to be provided with
the absolute_sigma=True setting to do the same.

Important

We see that even if the weight provided to every data point is the same, the
scale of the weight still effects the result. scipy was build such
that the opposite is true: if all datapoints have the same weight, the error
in the parameters does not depend on the scale of the weight.

This difference is due to the fact that symfit is build for areas of
science where one is dealing with measurement errors. And with measurement
errors, the size of the errors obviously matters for the certainty of the fit
parameters, even if the errors are the same for every measurement.

If you want the scipy behavior, initiate Fit
with absolute_sigma=False.

Comparison to Mathematica

In Mathematica, the default setting is also to use relative weights, which we
just argued is not correct when dealing with measurement errors. In [Mathematica]
this problem is discussed very nicely, and it is shown how to solve this in
Mathematica.

Since symfit is a fitting tool for the practical man, measurement errors
are assumed by default.

	taldcroft(1,2)

	http://nbviewer.jupyter.org/urls/gist.github.com/taldcroft/5014170/raw/31e29e235407e4913dc0ec403af7ed524372b612/curve_fit.ipynb

	Mathematica

	http://reference.wolfram.com/language/howto/FitModelsWithMeasurementErrors.html

Internal API Structure

Here we describe how the code is organized internally. This is only really
relevant for advanced users and developers.

Fitting 101

Fitting a model to data is, at it’s most basic, a parameter optimisation, and
depending on whether you do a least-squares fit or a loglikelihood fit your
objective function changes. This means we can split the process of fitting in
three distint, isolated parts:: the Model, the
Objective and the Minimizer.

In practice, Fit will choose an appropriate objective
and minimizer, but you can also give it specific instances and classes; just in
case you know better.

For both the minimizers and objectives there are abstract base classes, which
describe the minimal API required. There are corresponding abstract classes for
e.g. ConstrainedMinimizer.

Objectives

Objectives wrap both the Model and the data supplied, and when called must
return a scalar. This scalar will be minimized, so when you need something
maximized, be sure to add a negation in the right place(s). They must be
called with the parameter values as keyword arguments. Be sure to inherit from
the abstract base class(es) so you’re sure you define all the methods that are
expected.

Minimizers

Minimizers minimize. They are provided with a function to minimize (the
objective) and the Parameter s as a function of
which the objective should be minimized. Note that once again there are
different base classes for minimizers that take e.g. bounds or support
gradients. Their execute() method
takes the metaparameters for the minimization. Again, be sure to inherit from
the appropriate base class(es) if you’re implementing your own minimizer to
make sure all the expected methods are there. And if you’re wrapping Scipy
style minimizers, have a look at ScipyMinimize
to avoid a duplication of efforts.

Example

Let’s say we have some data:

xdata = np.linspace(0, 100, 25)
a_vec = np.random.normal(15, scale=2, size=xdata.shape)
b_vec = np.random.normal(100, scale=2, size=xdata.shape)
ydata = a_vec * xdata + b_vec

And we want to fit it to some model:

a = Parameter('a', value=0, min=0, max=1000)
b = Parameter('b', value=0, min=0, max=1000)
x = Variable('x')
model = a * x + b

If we want to fit this normally (but with a specified minimizer), we’d write
the following:

fit = Fit(mode, xdata, ydata, minimizer=BFGS)
fit_result = fit.execute()

Now instead, we want to call the minimizer directly. We first define a custom
objective function (actually just a chi squared):

def f(x, a, b):
 return a * x + b

def chi_squared(a, b):
 return np.sum((ydata - f(xdata, a, b))**2)

custom_minimize = BFGS(chi_squared, [a, b])
custom_minimize.execute()

You’ll see that the result of both will be the same!

Dependencies and Credits

Always pay credit where credit’s due. symfit uses the following projects to
make it’s sexy interface possible:

	leastsqbound-scipy [https://github.com/jjhelmus/leastsqbound-scipy] is
used to bound parameters to a given domain.

	seaborn [http://seaborn.pydata.org] was used to make the beautifully
styled plots in the example code. All you have to do to sexify your
matplotlib plot’s is import seaborn, even if you don’t use it’s special
plotting facilities, so I highly recommend it.

	numpy and scipy [https://docs.scipy.org/doc/] are of course used to do
efficient data processing.

	sympy [http://docs.sympy.org/latest/index.html] is used for the
manipulation of the symbolic expressions that give this project it’s
high readability.

Examples

Model Examples

These are examples of the flexibility of symfit Models. This is because
essentially any valid sympy [https://docs.sympy.org/latest/modules/matrices/immutablematrices.html#module-sympy] code can be provided as a model. This makes
it very intuitive to define your mathematical models almost as you would on
paper.

	Example: Fourier Series

	Example: Piecewise continuous function

	Example: Polynomial Surface Fit

	Example: ODEModel for Reaction Kinetics

	Example: CallableNumericalModel

Interactive Guess Module

The symfit.contrib.interactive_guess contrib module was designed to make
the process of finding initial guesses easier, by presenting the user with an
interactive matplotlib window in which they can play around with the
initial values.

	Example: Interactive Guesses ODE

	Example: Interactive Guesses Vector Model

Example: Fourier Series

Suppose we want to fit a Fourier series to a dataset. As an example, let’s take
a step function:

\[\begin{split}f(x) = \begin{cases} 0 & \text{if}\quad - \pi < x \leq 0 \\
 1 & \text{if}\quad 0 < x < \pi
\end{cases}\end{split}\]

In the example below, we will attempt to fit this with a Fourier Series of order
\(n=3\).

\[y(x) = a_0 + \sum_{i=1}^n a_i cos(i \omega x)
+ \sum_{i=1}^n b_i sin(i \omega x)\]

from symfit import parameters, variables, sin, cos, Fit
import numpy as np
import matplotlib.pyplot as plt

def fourier_series(x, f, n=0):
 """
 Returns a symbolic fourier series of order `n`.

 :param n: Order of the fourier series.
 :param x: Independent variable
 :param f: Frequency of the fourier series
 """
 # Make the parameter objects for all the terms
 a0, *cos_a = parameters(','.join(['a{}'.format(i) for i in range(0, n + 1)]))
 sin_b = parameters(','.join(['b{}'.format(i) for i in range(1, n + 1)]))
 # Construct the series
 series = a0 + sum(ai * cos(i * f * x) + bi * sin(i * f * x)
 for i, (ai, bi) in enumerate(zip(cos_a, sin_b), start=1))
 return series

x, y = variables('x, y')
w, = parameters('w')
model_dict = {y: fourier_series(x, f=w, n=3)}
print(model_dict)

Make step function data
xdata = np.linspace(-np.pi, np.pi)
ydata = np.zeros_like(xdata)
ydata[xdata > 0] = 1
Define a Fit object for this model and data
fit = Fit(model_dict, x=xdata, y=ydata)
fit_result = fit.execute()
print(fit_result)

Plot the result
plt.plot(xdata, ydata)
plt.plot(xdata, fit.model(x=xdata, **fit_result.params).y, ls=':')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

This code prints:

{y: a0 + a1*cos(w*x) + a2*cos(2*w*x) + a3*cos(3*w*x) + b1*sin(w*x) + b2*sin(2*w*x) + b3*sin(3*w*x)}

Parameter Value Standard Deviation
a0 5.000000e-01 2.075395e-02
a1 -4.903805e-12 3.277426e-02
a2 5.325068e-12 3.197889e-02
a3 -4.857033e-12 3.080979e-02
b1 6.267589e-01 2.546980e-02
b2 1.986491e-02 2.637273e-02
b3 1.846406e-01 2.725019e-02
w 8.671471e-01 3.132108e-02
Fitting status message: Optimization terminated successfully.
Number of iterations: 44
Regression Coefficient: 0.9401712713086535

[image: Fourier series fit to a step function]

Example: Piecewise continuous function

Piecewise continuus functions can be tricky to fit. However, using the
symfit interface this process is made a lot easier. Suppose we want to
fit to the following model:

\[\begin{split}f(x) = \begin{cases} x^2 - a x & \text{if}\quad x \leq x_0 \\
 a x + b & \text{otherwise}
\end{cases}\end{split}\]

The script below gives an example of how to fit such a model:

from symfit import parameters, variables, Fit, Piecewise, exp, Eq, Model
import numpy as np
import matplotlib.pyplot as plt

x, y = variables('x, y')
a, b, x0 = parameters('a, b, x0')

Make a piecewise model
y1 = x**2 - a * x
y2 = a * x + b
model = Model({y: Piecewise((y1, x <= x0), (y2, x > x0))})

As a constraint, we demand equality between the two models at the point x0
to do this, we substitute x -> x0 and demand equality using `Eq`
constraints = [
 Eq(y1.subs({x: x0}), y2.subs({x: x0}))
]
Generate example data
xdata = np.linspace(-4, 4., 50)
ydata = model(x=xdata, a=0.0, b=1.0, x0=1.0).y
np.random.seed(2)
ydata = np.random.normal(ydata, 0.5) # add noise

Help the fit by bounding the switchpoint between the models
x0.min = 0.8
x0.max = 1.2

fit = Fit(model, x=xdata, y=ydata, constraints=constraints)
fit_result = fit.execute()
print(fit_result)

plt.scatter(xdata, ydata)
plt.plot(xdata, model(x=xdata, **fit_result.params).y)
plt.show()

This code prints:

Parameter Value Standard Deviation
a -4.780338e-02 None
b 1.205443e+00 None
x0 1.051163e+00 None
Fitting status message: Optimization terminated successfully.
Number of iterations: 18
Regression Coefficient: 0.9849188499599985

[image: Continuous piecewise fit]

Judging from this graph, another possible solution would have been to also
demand a continuous derivative at the point x0. This can be achieved by
setting the following constraints instead:

constraints = [
 Eq(y1.diff(x).subs({x: x0}), y2.diff(x).subs({x: x0})),
 Eq(y1.subs({x: x0}), y2.subs({x: x0}))
]

This gives the following plot:

[image: Differentiable fit to a piecewise function]

and the following fit report:

Parameter Value Standard Deviation
a 8.000000e-01 None
b -6.400000e-01 None
x0 8.000000e-01 None
Fitting status message: Optimization terminated successfully.
Number of iterations: 3
Regression Coefficient: 0.8558226069368662

The first fit is therefore the prevered one, but it does show you how easy it is
to set these constraints using symfit.

Example: Polynomial Surface Fit

In this example, we want to fit a polynomial to a 2D surface. Suppose the
surface is described by

\[f(x) = x^2 + y^2 + 2 x y\]

A fit to such data can be performed as follows:

from symfit import Poly, variables, parameters, Model, Fit
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

x, y, z = variables('x, y, z')
c1, c2 = parameters('c1, c2')
Make a polynomial. Note the `as_expr` to make it symfit friendly.
model_dict = {
 z: Poly({(2, 0): c1, (0, 2): c1, (1, 1): c2}, x ,y).as_expr()
}
model = Model(model_dict)
print(model)

Generate example data
x_vec = np.linspace(-5, 5)
y_vec = np.linspace(-10, 10)
xdata, ydata = np.meshgrid(x_vec, y_vec)
zdata = model(x=xdata, y=ydata, c1=1.0, c2=2.0).z
zdata = np.random.normal(zdata, 0.05 * zdata) # add 5% noise

Perform the fit
fit = Fit(model, x=xdata, y=ydata, z=zdata)
fit_result = fit.execute()
zfit = model(x=xdata, y=ydata, **fit_result.params).z
print(fit_result)

fig, (ax1, ax2) = plt.subplots(1, 2)
sns.heatmap(zdata, ax=ax1)
sns.heatmap(zfit, ax=ax2)
plt.show()

This code prints:

z(x, y; c1, c2) = c1*x**2 + c1*y**2 + c2*x*y

Parameter Value Standard Deviation
c1 9.973489e-01 1.203071e-03
c2 1.996901e+00 3.736484e-03
Fitting status message: Optimization terminated successfully.
Number of iterations: 6
Regression Coefficient: 0.9952824293713467

[image: Polynomial surface fit]

Example: ODEModel for Reaction Kinetics

Below is an example of how to use the symfit.core.fit.ODEModel. In this
example we will fit reaction kinetics data, taken from libretexts [http://chem.libretexts.org/Core/Physical_Chemistry/Kinetics/Rate_Laws/The_Rate_Law].

The data is from a first-order reaction \(\text{A} \rightarrow \text{B}\).

from symfit import variables, Parameter, Fit, D, ODEModel
import numpy as np
import matplotlib.pyplot as plt

First order reaction kinetics. Data taken from
http://chem.libretexts.org/Core/Physical_Chemistry/Kinetics/Rate_Laws/The_Rate_Law
tdata = np.array([0, 0.9184, 9.0875, 11.2485, 17.5255, 23.9993, 27.7949,
 31.9783, 35.2118, 42.973, 46.6555, 50.3922, 55.4747, 61.827,
 65.6603, 70.0939])
concentration = np.array([0.906, 0.8739, 0.5622, 0.5156, 0.3718, 0.2702, 0.2238,
 0.1761, 0.1495, 0.1029, 0.086, 0.0697, 0.0546, 0.0393,
 0.0324, 0.026])

Define our ODE model
A, B, t = variables('A, B, t')
k = Parameter('k')
model = ODEModel(
 {D(A, t): - k * A, D(B, t): k * A},
 initial={t: tdata[0], A: concentration[0], B: 0.0}
)

fit = Fit(model, A=concentration, t=tdata)
fit_result = fit.execute()

print(fit_result)

Plotting, irrelevant to the symfit part.
t_axis = np.linspace(0, 80)
A_fit, B_fit, = model(t=t_axis, **fit_result.params)
plt.scatter(tdata, concentration)
plt.plot(t_axis, A_fit, label='[A]')
plt.plot(t_axis, B_fit, label='[B]')
plt.xlabel('t /min')
plt.ylabel('[X] /M')
plt.ylim(0, 1)
plt.xlim(0, 80)
plt.legend(loc=1)
plt.show()

This is the resulting fit:

[image: ODE Fit to kinetics data]

Example: CallableNumericalModel

Below is an example of how to use the
symfit.core.fit.CallableNumericalModel. This class allows you to
provide custom callables as your model, while still allowing clean interfacing
with the symfit API.

These models also accept a mixture of symbolic and callable components, as will
be demonstrated below. This allows the power-user great flexibility, since it is
still easy to interface with symfit’s constraints, minimizers, etc.

from symfit import variables, parameters, Fit, D, ODEModel, CallableNumericalModel
import numpy as np
import matplotlib.pyplot as plt

def nonanalytical_func(x, a, b):
 """
 This can be any pythonic function which should be fitted, typically one
 which is not easily written or supported as an analytical expression.
 """
 # Do your non-trivial magic here. In this case a Piecewise, although this
 # could also be done symbolically.
 y = np.zeros_like(x)
 y[x > b] = (a * (x - b) + b)[x > b]
 y[x <= b] = b
 return y

x, y1, y2 = variables('x, y1, y2')
a, b = parameters('a, b')

mixed_model = CallableNumericalModel(
 {y1: nonanalytical_func, y2: x ** a},
 independent_vars=[x],
 params=[a, b]
)

Generate data
xdata = np.linspace(0, 10)
y1data, y2data = mixed_model(x=xdata, a=1.3, b=4)
y1data = np.random.normal(y1data, 0.1 * y1data)
y2data = np.random.normal(y2data, 0.1 * y2data)

Perform the fit
b.value = 3.5
fit = Fit(mixed_model, x=xdata, y1=y1data, y2=y2data)
fit_result = fit.execute()
print(fit_result)

Plotting, irrelevant to the symfit part.
y1_fit, y2_fit, = mixed_model(x=xdata, **fit_result.params)
plt.scatter(xdata, y1data)
plt.plot(xdata, y1_fit, label=r'y_1')
plt.scatter(xdata, y2data)
plt.plot(xdata, y2_fit, label=r'y_2')
plt.legend(loc=0)
plt.show()

This is the resulting fit:

[image: Custom Callable Model]

Example: Interactive Guesses ODE

Below is an example in which the initial guesses module
is used to help solve an ODE problem.

#!/usr/bin/env python3
-*- coding: utf-8 -*-
from symfit import variables, Parameter, Fit, D, ODEModel
import numpy as np
from symfit.contrib.interactive_guess import InteractiveGuess2D

First order reaction kinetics. Data taken from
http://chem.libretexts.org/Core/Physical_Chemistry/Kinetics/Rate_Laws/The_Rate_Law
tdata = np.array([0, 0.9184, 9.0875, 11.2485, 17.5255, 23.9993, 27.7949,
 31.9783, 35.2118, 42.973, 46.6555, 50.3922, 55.4747, 61.827,
 65.6603, 70.0939])
concentration = np.array([0.906, 0.8739, 0.5622, 0.5156, 0.3718, 0.2702, 0.2238,
 0.1761, 0.1495, 0.1029, 0.086, 0.0697, 0.0546, 0.0393,
 0.0324, 0.026])

Define our ODE model
A, t = variables('A, t')
k = Parameter('k')
model = ODEModel({D(A, t): - k * A}, initial={t: tdata[0], A: concentration[0]})

guess = InteractiveGuess2D(model, A=concentration, t=tdata, n_points=250)
guess.execute()
print(guess)

fit = Fit(model, A=concentration, t=tdata)
fit_result = fit.execute()
print(fit_result)

This is a screenshot of the interactive guess window:

[image: Fourier series fit to a step function]

By using the sliders, you can interactively play with the initial guesses until
it is close enough. Then after closing the window, this initial value is set
for the parameter, and the fit can be performed.

Example: Interactive Guesses Vector Model

Below is an example in which the initial guesses module
is used to help solve two-component vector valued function:

-*- coding: utf-8 -*-
from symfit import Variable, Parameter, Fit, Model
from symfit.contrib.interactive_guess import InteractiveGuess2D
import numpy as np

x = Variable('x')
y1 = Variable('y1')
y2 = Variable('y2')
k = Parameter('k', 900)
x0 = Parameter('x0', 1.5)

model = {
 y1: k * (x-x0)**2,
 y2: x - x0
}
model = Model(model)

Generate example data
x_data = np.linspace(0, 2.5, 50)
data = model(x=x_data, k=1000, x0=1)
y1_data = data.y1
y2_data = data.y2

guess = InteractiveGuess2D(model, x=x_data, y1=y1_data, y2=y2_data, n_points=250)
guess.execute()
print(guess)

fit = Fit(model, x=x_data, y1=y1_data, y2=y2_data)
fit_result = fit.execute()
print(fit_result)

This is a screenshot of the interactive guess window:

[image: Fourier series fit to a step function]

By using the sliders, you can interactively play with the initial guesses until
it is close enough. Then after closing the window, this initial values are set
for the parameters, and the fit can be performed.

Module Documentation

This page contains documentation to everything symfit has to offer.

Fit

	
class symfit.core.fit.BaseCallableModel(model)

	Bases: symfit.core.fit.BaseModel

Baseclass for callable models.

	
__call__(*args, **kwargs)

	Evaluate the model for a certain value of the independent vars and parameters.
Signature for this function contains independent vars and parameters, NOT dependent and sigma vars.

Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
Alphabetical order within each group.

	Parameters

	
	args –

	kwargs –

	Returns

	A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple,
even for scalar valued functions. This is done for consistency.

	
eval_components(*args, **kwargs)

	
	Returns

	lambda functions of each of the components in model_dict, to be used in numerical calculation.

	
eval_jacobian(*args, **kwargs)

	
	Returns

	The jacobian matrix of the function.

	
finite_difference(*args, dx=1e-08, **kwargs)

	Calculates a numerical approximation of the Jacobian of the model using
the sixth order central finite difference method. Accepts a dx
keyword to tune the relative stepsize used.
Makes 6*n_params calls to the model.

	Returns

	A numerical approximation of the Jacobian of the model as a
list with length n_components containing numpy arrays of shape
(n_params, n_datapoints)

	
numerical_components()

	
	Returns

	A list of callables corresponding to each of the components
of the model.

	
class symfit.core.fit.BaseFit(model, *ordered_data, absolute_sigma=None, **named_data)

	Bases: symfit.core.fit.TakesData

Abstract base class for all fitting objects.

	
error_func(*args, **kwargs)

	Every fit object has to define an error_func method, giving the function to be minimized.

	
eval_jacobian(*args, **kwargs)

	Every fit object has to define an eval_jacobian method, giving the jacobian of the
function to be minimized.

	
execute(*args, **kwargs)

	Every fit object has to define an execute method.
Any * and ** arguments will be passed to the fitting module that is being wrapped, e.g. leastsq.

	Args kwargs

	

	Returns

	Instance of FitResults

	
class symfit.core.fit.BaseModel(model)

	Bases: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]

ABC for Model’s. Makes sure models are iterable.
Models can be initiated from Mappings or Iterables of Expressions,
or from an expression directly.
Expressions are not enforced for ducktyping purposes.

	
__eq__(other)

	Model’s are considered equal when they have the same dependent variables,
and the same expressions for those dependent variables. The same is defined here
as passing sympy == for the vars themselves, and as expr1 - expr2 == 0 for the
expressions. For more info check the sympy docs [https://github.com/sympy/sympy/wiki/Faq].

	Parameters

	other – Instance of Model.

	Returns

	bool

	
__getitem__(dependent_var)

	Returns the expression belonging to a given dependent variable.

	Parameters

	dependent_var (Variable) – Instance of Variable

	Returns

	The expression belonging to dependent_var

	
__init__(model)

	Initiate a Model from a dict:

a = Model({y: x**2})

Preferred way of initiating Model, since now you know what the dependent variable is called.

	Parameters

	model – dict of Expr, where dependent variables are the keys.

	
__iter__()

	
	Returns

	iterable over self.model_dict

	
__len__()

	
	Returns

	the number of dependent variables for this model.

	
__neg__()

	
	Returns

	new model with opposite sign. Does not change the model in-place,
but returns a new copy.

	
__reduce__()

	helper for pickle

	
__str__()

	Printable representation of a Mapping model.

	Returns

	str

	
bounds

	
	Returns

	List of tuples of all bounds on parameters.

	
shared_parameters

	
	Returns

	bool, indicating if parameters are shared between the vector
components of this model.

	
vars

	
	Returns

	Returns a list of dependent, independent and sigma variables, in that order.

	
class symfit.core.fit.BaseNumericalModel(model, independent_vars, params)

	Bases: symfit.core.fit.BaseModel

ABC for Numerical Models. These are models whose components are generic
python callables.

	
__eq__(other)

	Model’s are considered equal when they have the same dependent variables,
and the same expressions for those dependent variables. The same is defined here
as passing sympy == for the vars themselves, and as expr1 - expr2 == 0 for the
expressions. For more info check the sympy docs [https://github.com/sympy/sympy/wiki/Faq].

	Parameters

	other – Instance of Model.

	Returns

	bool

	
__init__(model, independent_vars, params)

	
	Parameters

	
	model – dict of callable, where dependent variables are the
keys. If instead of a dict a (sequence of) callable is provided,
it will be turned into a dict automatically.

	independent_vars – The independent variables of the model.

	params – The parameters of the model.

	
__neg__()

	
	Returns

	new model with opposite sign. Does not change the model in-place,
but returns a new copy.

	
__reduce__()

	helper for pickle

	
shared_parameters

	
	Returns

	bool, indicating if parameters are shared between the vector

components of this model.

	
class symfit.core.fit.CallableModel(model)

	Bases: symfit.core.fit.BaseCallableModel

Defines a callable model. The usual rules apply to the ordering of the
arguments:

	first independent variables, then dependent variables, then parameters.

	within each of these groups they are ordered alphabetically.

	
numerical_components

	
	Returns

	lambda functions of each of the analytical components in

model_dict, to be used in numerical calculation.

	
class symfit.core.fit.CallableNumericalModel(model, independent_vars, params)

	Bases: symfit.core.fit.BaseCallableModel, symfit.core.fit.BaseNumericalModel

Callable model, whose components are callables provided by the user.
This allows the user to provide the components directly.

Example:

x, y = variables('x, y')
a, b = parameters('a, b')
numerical_model = CallableNumericalModel(
 {y: lambda x, a, b: a * x + b},
 independent_vars=[x],
 params=[a, b]
)

This is identical in functionality to the more traditional:

x, y = variables('x, y')
a, b = parameters('a, b')
model = CallableModel({y: a * x + b})

but allows power-users a lot more freedom while still interacting
seamlessly with the symfit API.

Note

All of the callables must accept all of the independent_vars
and params of the model as arguments, even if not all of them are
used by every callable.

	
class symfit.core.fit.Constraint(constraint, model)

	Bases: symfit.core.fit.Model

Constraints are a special type of model in that they have a type: >=, == etc.
They are made to have lhs - rhs == 0 of the original expression.

For example, Eq(y + x, 4) -> Eq(y + x - 4, 0)

Since a constraint belongs to a certain model, it has to be initiated with knowledge of it’s parent model.
This is important because all numerical_ methods are done w.r.t. the parameters and variables of the parent
model, not the constraint! This is because the constraint might not have all the parameter or variables that the
model has, but in order to compute for example the Jacobian we still want to derive w.r.t. all the parameters,
not just those present in the constraint.

	
__init__(constraint, model)

	
	Parameters

	
	constraint – constraint that model should be subjected to.

	model – A constraint is always tied to a model.

	
__neg__()

	
	Returns

	new model with opposite sign. Does not change the model in-place,
but returns a new copy.

	
__reduce__()

	helper for pickle

	
jacobian

	
	Returns

	Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.
Partial derivatives are of the components of the function with respect to the Parameter’s,
not the independent Variable’s.

	
numerical_components

	
	Returns

	lambda functions of each of the components in model_dict, to be used in numerical calculation.

	
numerical_jacobian

	
	Returns

	lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.

	
class symfit.core.fit.Fit(model, *ordered_data, constraints=None, objective=None, minimizer=None, **named_data)

	Bases: symfit.core.fit.HasCovarianceMatrix

Your one stop fitting solution! Based on the nature of the input, this
object will attempt to select the right fitting type for your problem.

If you need very specific control over how the problem is solved, you can
pass it the minimizer or objective function you would like to use.

Example usage:

a, b = parameters('a, b')
x, y = variables('x, y')

model = {y: a * x + b}

Fit will use its default settings
fit = Fit(model, x=xdata, y=ydata)
fit_result = fit.execute()

Use Nelder-Mead instead
fit = Fit(model, x=xdata, y=ydata, minimizer=NelderMead)
fit_result = fit.execute()

Use Nelder-Mead to get close, and BFGS to polish it off
fit = Fit(model, x=xdata, y=ydata, minimizer=[NelderMead, BFGS])
fit_result = fit.execute(minimizer_kwargs=[dict(xatol=0.1), {}])

	
__init__(model, *ordered_data, constraints=None, objective=None, minimizer=None, **named_data)

	
	Parameters

	
	model – (dict of) sympy expression(s) or Model object.

	constraints – iterable of Relation objects to be used as
constraints.

	absolute_sigma (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default. If the sigma is only used
for relative weights in your problem, you could consider setting it
to False, but if your sigma are measurement errors, keep it at True.
Note that curve_fit has this set to False by default, which is
wrong in experimental science.

	objective – Have Fit use your specified objective. Can be one of
the predefined symfit objectives or any callable which accepts fit
parameters and returns a scalar.

	minimizer – Have Fit use your specified
symfit.core.minimizers.BaseMinimizer. Can be a
Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence] of symfit.core.minimizers.BaseMinimizer.

	ordered_data – data for dependent, independent and sigma
variables. Assigned in the following order: independent vars are
assigned first, then dependent vars, then sigma’s in dependent
vars. Within each group they are assigned in alphabetical order.

	named_data – assign dependent, independent and sigma variables
data by name.

	
execute(**minimize_options)

	Execute the fit.

	Parameters

	minimize_options – keyword arguments to be passed to the specified
minimizer.

	Returns

	FitResults instance

	
class symfit.core.fit.HasCovarianceMatrix(model, *ordered_data, absolute_sigma=None, **named_data)

	Bases: symfit.core.fit.TakesData

Mixin class for calculating the covariance matrix for any model that has a
well-defined Jacobian \(J\). The covariance is then approximated as
\(J^T W J\), where W contains the weights of each data point.

Supports vector valued models, but is unable to estimate covariances for
those, just variances. Therefore, take the result with a grain of salt for
vector models.

	
covariance_matrix(best_fit_params)

	Given best fit parameters, this function finds the covariance matrix.
This matrix gives the (co)variance in the parameters.

	Parameters

	best_fit_params – dict of best fit parameters as given by .best_fit_params()

	Returns

	covariance matrix.

	
class symfit.core.fit.LinearLeastSquares(*args, **kwargs)

	Bases: symfit.core.fit.BaseFit

Experimental. Solves the linear least squares problem analytically. Involves no iterations
or approximations, and therefore gives the best possible fit to the data.

The Model provided has to be linear.

Currently, since this object still has to mature, it suffers from the following limitations:

	It does not check if the model can be linearized by a simple substitution.
For example, exp(a * x) -> b * exp(x). You will have to do this manually.

	Does not use bounds or guesses on the Parameter’s. Then again, it doesn’t have to,
since you have an exact solution. No guesses required.

	It only works with scalar functions. This is strictly enforced.

	
__init__(*args, **kwargs)

	
	Raises

	ModelError in case of a non-linear model or when a vector
valued function is provided.

	
best_fit_params()

	Fits to the data and returns the best fit parameters.

	Returns

	dict containing parameters and their best-fit values.

	
covariance_matrix(best_fit_params)

	Given best fit parameters, this function finds the covariance matrix.
This matrix gives the (co)variance in the parameters.

	Parameters

	best_fit_params – dict of best fit parameters as given by .best_fit_params()

	Returns

	covariance matrix.

	
execute()

	Execute an analytical (Linear) Least Squares Fit. This object works by symbolically
solving when \(\nabla \chi^2 = 0\).

To perform this task the expression of \(\nabla \chi^2\) is determined, ignoring that
\(\chi^2\) involves summing over all terms. Then the sum is performed by substituting
the variables by their respective data and summing all terms, while leaving the parameters
symbolic.

The resulting system of equations is then easily solved with sympy.solve.

	Returns

	FitResult

	
static is_linear(model)

	Test whether model is of linear form in it’s parameters.

Currently this function does not recognize if a model can be considered linear
by a simple substitution, such as exp(k x) = k’ exp(x).

	Parameters

	model – Model instance

	Returns

	True or False

	
class symfit.core.fit.Model(model)

	Bases: symfit.core.fit.CallableModel

Model represents a symbolic function and all it’s derived properties such as sum of squares, jacobian etc.
Models can be initiated from several objects:

a = Model({y: x**2})
b = Model(y=x**2)

Models are callable. The usual rules apply to the ordering of the arguments:

	first independent variables, then dependent variables, then parameters.

	within each of these groups they are ordered alphabetically.

Models are also iterable, behaving as their internal model_dict. In the example above,
a[y] returns x**2, len(a) == 1, y in a == True, etc.

	
chi

	
	Returns

	Symbolic Square root of \(\chi^2\). Required for MINPACK optimization only. Denoted as \(\sqrt(\chi^2)\)

	
chi_jacobian

	Return a symbolic jacobian of the \(\sqrt(\chi^2)\) function.
Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector! This is because that’s what leastsq needs.

	
chi_squared

	
	Returns

	Symbolic \(\chi^2\)

	
chi_squared_jacobian

	Return a symbolic jacobian of the \(\chi^2\) function.
Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector!

	
eval_jacobian(*args, **kwargs)

	
	Returns

	Jacobian evaluated at the specified point.

	
jacobian

	
	Returns

	Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.
Partial derivatives are of the components of the function with respect to the Parameter’s,
not the independent Variable’s.

	
numerical_chi

	
	Returns

	lambda function of the .chi method, to be used in MINPACK optimisation.

	
numerical_chi_jacobian

	
	Returns

	lambda functions of the jacobian of the .chi method, which can be used in numerical optimization.

	
numerical_chi_squared

	
	Returns

	lambda function of the .chi_squared method, to be used in numerical optimisation.

	
numerical_chi_squared_jacobian

	
	Returns

	lambda functions of the jacobian of the .chi_squared method.

	
numerical_jacobian

	
	Returns

	lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.

	
exception symfit.core.fit.ModelError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when a problem occurs with a model.

	
class symfit.core.fit.NonLinearLeastSquares(*args, **kwargs)

	Bases: symfit.core.fit.BaseFit

Experimental.
Implements non-linear least squares [wiki_nllsq]. Works by a two step process:
First the model is linearised by doing a first order taylor expansion
around the guesses for the parameters.
Then a LinearLeastSquares fit is performed. This is iterated until
a fit of sufficient quality is obtained.

Sensitive to good initial guesses. Providing good initial guesses is a must.

	wiki_nllsq

	https://en.wikipedia.org/wiki/Non-linear_least_squares

	
__init__(*args, **kwargs)

	
	Parameters

	
	model – (dict of) sympy expression or Model object.

	absolute_sigma (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default. If the sigma is only used
for relative weights in your problem, you could consider setting it to
False, but if your sigma are measurement errors, keep it at True.
Note that curve_fit has this set to False by default, which is wrong in
experimental science.

	ordered_data – data for dependent, independent and sigma variables. Assigned in
the following order: independent vars are assigned first, then dependent
vars, then sigma’s in dependent vars. Within each group they are assigned in
alphabetical order.

	named_data – assign dependent, independent and sigma variables data by name.

Standard deviation can be provided to any variable. They have to be prefixed
with sigma_. For example, let x be a Variable. Then sigma_x will give the
stdev in x.

	
execute(relative_error=1e-08, max_iter=500)

	Perform a non-linear least squares fit.

	Parameters

	
	relative_error – Relative error between the sum of squares
of subsequent itterations. Once smaller than the value specified,
the fit is considered complete.

	max_iter – Maximum number of iterations before giving up.

	Returns

	Instance of FitResults.

	
class symfit.core.fit.ODEModel(model_dict, initial, *lsoda_args, **lsoda_kwargs)

	Bases: symfit.core.fit.CallableModel

Model build from a system of ODEs. When the model is called, the ODE is
integrated using the LSODA package.

	
__call__(*args, **kwargs)

	Evaluate the model for a certain value of the independent vars and parameters.
Signature for this function contains independent vars and parameters, NOT dependent and sigma vars.

Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
Alphabetical order within each group.

	Parameters

	
	args – Ordered arguments for the parameters and independent
variables

	kwargs – Keyword arguments for the parameters and independent
variables

	Returns

	A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple,
even for scalar valued functions. This is done for consistency.

	
__getitem__(dependent_var)

	Gives the function defined for the derivative of dependent_var.
e.g. \(y' = f(y, t)\), model[y] -> f(y, t)

	Parameters

	dependent_var –

	Returns

	

	
__init__(model_dict, initial, *lsoda_args, **lsoda_kwargs)

	
	Parameters

	
	model_dict – Dictionary specifying ODEs. e.g.
model_dict = {D(y, x): a * x**2}

	initial – dict of initial conditions for the ODE.
Must be provided! e.g.
initial = {y: 1.0, x: 0.0}

	lsoda_args – args to pass to the lsoda solver.
See scipy’s odeint [http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html]
for more info.

	lsoda_kwargs – kwargs to pass to the lsoda solver.

	
__iter__()

	
	Returns

	iterable over self.model_dict

	
__neg__()

	
	Returns

	new model with opposite sign. Does not change the model in-place,
but returns a new copy.

	
__reduce__()

	helper for pickle

	
__str__()

	Printable representation of this model.

	Returns

	str

	
eval_components(*args, **kwargs)

	Numerically integrate the system of ODEs.

	Parameters

	
	args – Ordered arguments for the parameters and independent
variables

	kwargs – Keyword arguments for the parameters and independent
variables

	Returns

	

	
class symfit.core.fit.TakesData(model, *ordered_data, absolute_sigma=None, **named_data)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An base class for everything that takes data. Most importantly, it takes care
of linking the provided data to variables. The allowed variables are extracted
from the model.

	
__init__(model, *ordered_data, absolute_sigma=None, **named_data)

	
	Parameters

	
	model – (dict of) sympy expression or Model object.

	absolute_sigma (bool [https://docs.python.org/3/library/functions.html#bool]) – True by default. If the sigma is only used
for relative weights in your problem, you could consider setting it to
False, but if your sigma are measurement errors, keep it at True.
Note that curve_fit has this set to False by default, which is wrong in
experimental science.

	ordered_data – data for dependent, independent and sigma variables. Assigned in
the following order: independent vars are assigned first, then dependent
vars, then sigma’s in dependent vars. Within each group they are assigned in
alphabetical order.

	named_data – assign dependent, independent and sigma variables data by name.

Standard deviation can be provided to any variable. They have to be prefixed
with sigma_. For example, let x be a Variable. Then sigma_x will give the
stdev in x.

	
data_shapes

	Returns the shape of the data. In most cases this will be the same for
all variables of the same type, if not this raises an Exception.

Ignores variables which are set to None by design so we know that those
None variables can be assumed to have the same shape as the other in
calculations where this is needed, such as the covariance matrix.

	Returns

	Tuple of all independent var shapes, dependent var shapes.

	
dependent_data

	Read-only Property

	Returns

	Data belonging to each dependent variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
independent_data

	Read-only Property

	Returns

	Data belonging to each independent variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
initial_guesses

	
	Returns

	Initial guesses for every parameter.

	
sigma_data

	Read-only Property

	Returns

	Data belonging to each sigma variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
class symfit.core.fit.TaylorModel(model)

	Bases: symfit.core.fit.Model

A first-order Taylor expansion of a model around given parameter values (\(p_0\)).
Is used by NonLinearLeastSquares. Currently only a first order expansion is implemented.

	
__init__(model)

	Make a first order Taylor expansion of model.

	Parameters

	model – Instance of Model

	
__str__()

	When printing a TaylorModel, the point around which the expansion took place is included.

For example, a Taylor expansion of {y: sin(w * x)} at w = 0 would be printed as:

@{w: 0.0} -> y(x; w) = w*x

	
p0

	Property of the \(p_0\) around which to expand. Should be set by the names of
the parameters themselves.

Example:

a = Parameter()
x, y = variables('x, y')
model = TaylorModel({y: sin(a * x)})

model.p0 = {a: 0.0}

	
params

	params returns only the free parameters. Strictly speaking, the expression for a
TaylorModel contains both the parameters \(\vec{p}\) and \(\vec{p_0}\)
around which to expand, but params should only give \(\vec{p}\). To get a
mapping to the \(\vec{p_0}\), use .params_0.

	
symfit.core.fit.r_squared(model, fit_result, data)

	Calculates the coefficient of determination, R^2, for the fit.

(Is not defined properly for vector valued functions.)

	Parameters

	
	model – Model instance

	fit_result – FitResults instance

	data – data with which the fit was performed.

Argument

	
class symfit.core.argument.Argument(name=None, *args, **assumptions)

	Bases: sympy.core.symbol.Symbol [https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol]

Base class for symfit symbols. This helps make symfit symbols
distinguishable from sympy [https://docs.sympy.org/latest/modules/matrices/immutablematrices.html#module-sympy] symbols.

If no name is explicitly provided a name will be generated.

For example:

y = Variable()
print(y.name)
>> 'x_0'

y = Variable('y')
print(y.name)
>> 'y'

	
__init__(name=None, *args, **assumptions)

	Initialize self. See help(type(self)) for accurate signature.

	
static __new__(cls, name=None, *args, **assumptions)

	Create a new Argument. See Symbol [https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol]
for more information.

	
class symfit.core.argument.Parameter(name=None, value=1.0, min=None, max=None, fixed=False, **assumptions)

	Bases: symfit.core.argument.Argument

Parameter objects are used to facilitate bounds on function parameters.
Important change from symfit>0.4.1: the name needs to be the first keyword,
followed by the guess value. If no name is provided, the initial value can
be passed as a keyword argument, e.g.: value=0.1. A generic name will then
be generated.

	
__call__(*values, **named_values)

	Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the
first call so they don’t have to be recalculated for every call. However, nothing
can be stored on self as sympy uses __slots__ for efficiency. This means there is no
instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack into the
__slots__ of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible
on the Expr before calling it anyway, which makes calculating the signature absolutely useless.
However, I hope that someday some monkey patching expert in shining armour comes by and finds
a way to store it in __signature__ upon __init__ of any symfit expr such that calling
inspect_sig.signature on a symbolic expression will tell you which arguments to provide.

	Parameters

	
	self – Any subclass of sympy.Expr

	values – Values for the Parameters and Variables of the Expr.

	named_values – Values for the vars and params by name. named_values is
allowed to contain too many values, as this sometimes happens when using
**fit_result.params on a submodel. The irrelevant params are simply ignored.

	Returns

	The function evaluated at values. The type depends entirely on the input.
Typically an array or a float but nothing is enforced.

	
__init__(name=None, value=1.0, min=None, max=None, fixed=False, **assumptions)

	
	Parameters

	
	name – Name of the Parameter.

	value – Initial guess value.

	min – Lower bound on the parameter value.

	max – Upper bound on the parameter value.

	fixed (bool [https://docs.python.org/3/library/functions.html#bool]) – Fix the parameter to value during fitting.

	assumptions – assumptions to pass to sympy.

	
static __new__(cls, name=None, *args, **kwargs)

	Create a new Argument. See Symbol [https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol]
for more information.

	
class symfit.core.argument.Variable(name=None, *args, **assumptions)

	Bases: symfit.core.argument.Argument

Variable type.

Operators

Monkey Patching module.

This module makes sympy Expressions callable, which makes the whole project feel more consistent.

	
symfit.core.operators.call(self, *values, **named_values)

	Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the
first call so they don’t have to be recalculated for every call. However, nothing
can be stored on self as sympy uses __slots__ for efficiency. This means there is no
instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack into the
__slots__ of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible
on the Expr before calling it anyway, which makes calculating the signature absolutely useless.
However, I hope that someday some monkey patching expert in shining armour comes by and finds
a way to store it in __signature__ upon __init__ of any symfit expr such that calling
inspect_sig.signature on a symbolic expression will tell you which arguments to provide.

	Parameters

	
	self – Any subclass of sympy.Expr

	values – Values for the Parameters and Variables of the Expr.

	named_values – Values for the vars and params by name. named_values is
allowed to contain too many values, as this sometimes happens when using
**fit_result.params on a submodel. The irrelevant params are simply ignored.

	Returns

	The function evaluated at values. The type depends entirely on the input.
Typically an array or a float but nothing is enforced.

Fit Results

	
class symfit.core.fit_results.FitResults(model, popt, covariance_matrix, infodic, mesg, ier, **gof_qualifiers)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to display the results of a fit in a nice and unambiguous way.
All things related to the fit are available on this class, e.g.
- parameter values + stdev
- R squared (Regression coefficient.) or other fit quality qualifiers.
- fitting status message
- covariance matrix

Contains the attribute params, which is an
OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] containing all the parameter names and
their optimized values. Can be ** unpacked when evaluating
Model’s.

	
__eq__(other)

	Return self==value.

	
__getattr__(item)

	Return the requested item if it can be found in the gof_qualifiers
dict.

	Parameters

	item – Name of Goodness of Fit qualifier.

	Returns

	Goodness of Fit qualifier if present.

	
__init__(model, popt, covariance_matrix, infodic, mesg, ier, **gof_qualifiers)

	Excuse the ugly names of most of these variables, they are inherited from scipy. Will be changed.

	Parameters

	
	model – Model that was fit to.

	popt – best fit parameters, same ordering as in model.params.

	pcov – covariance matrix.

	infodic – dict with fitting info.

	mesg – Status message.

	ier – Number of iterations.

	gof_qualifiers – Any remaining keyword arguments should be
Goodness of fit (g.o.f.) qualifiers.

	
__str__()

	Pretty print the results as a table.

	
covariance(param_1, param_2)

	Return the covariance between param_1 and param_2.

	Parameters

	
	param_1 – Parameter Instance.

	param_2 – Parameter Instance.

	Returns

	Covariance of the two params.

	
stdev(param)

	Return the standard deviation in a given parameter as found by the fit.

	Parameters

	param – Parameter Instance.

	Returns

	Standard deviation of param.

	
value(param)

	Return the value in a given parameter as found by the fit.

	Parameters

	param – Parameter Instance.

	Returns

	Value of param.

	
variance(param)

	Return the variance in a given parameter as found by the fit.

	Parameters

	param – Parameter Instance.

	Returns

	Variance of param.

Minimizers

	
class symfit.core.minimizers.BFGS(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyGradientMinimize

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s BFGS algorithm.

	
class symfit.core.minimizers.BaseMinimizer(objective, parameters)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

ABC for all Minimizers.

	
__init__(objective, parameters)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
execute(**options)

	The execute method should implement the actual minimization procedure,
and should return a FitResults instance.

	Parameters

	options – options to be used by the minimization procedure.

	Returns

	an instance of FitResults.

	
class symfit.core.minimizers.BasinHopping(*args, local_minimizer=<class 'symfit.core.minimizers.BFGS'>, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.BaseMinimizer

Wrapper around scipy.optimize.basinhopping() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping]’s basin-hopping algorithm.

As always, the best way to use this algorithm is through
Fit, as this will automatically select a local
minimizer for you depending on whether you provided bounds, constraints, etc.

However, BasinHopping can also be used directly. Example (with jacobian):

import numpy as np
from symfit.core.minimizers import BFGS, BasinHopping
from symfit import parameters

def func2d(x1, x2):
 f = np.cos(14.5 * x1 - 0.3) + (x2 + 0.2) * x2 + (x1 + 0.2) * x1
 return f

def jac2d(x1, x2):
 df = np.zeros(2)
 df[0] = -14.5 * np.sin(14.5 * x1 - 0.3) + 2. * x1 + 0.2
 df[1] = 2. * x2 + 0.2
 return df

x0 = [1.0, 1.0]
np.random.seed(555)
x1, x2 = parameters('x1, x2', value=x0)
fit = BasinHopping(func2d, [x1, x2], local_minimizer=BFGS)
minimizer_kwargs = {'jac': fit.list2kwargs(jac2d)}
fit_result = fit.execute(niter=200, minimizer_kwargs=minimizer_kwargs)

See scipy.optimize.basinhopping() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping] for more options.

	
__init__(*args, local_minimizer=<class 'symfit.core.minimizers.BFGS'>, **kwargs)

	
	Parameters

	
	local_minimizer – minimizer to be used for local minimization
steps. Can be any subclass of
symfit.core.minimizers.ScipyMinimize.

	args – positional arguments to be passed on to super.

	kwargs – keyword arguments to be passed on to super.

	
execute(**minimize_options)

	Execute the basin-hopping minimization.

	Parameters

	minimize_options – options to be passed on to
scipy.optimize.basinhopping() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping].

	Returns

	symfit.core.fit_results.FitResults

	
class symfit.core.minimizers.BoundedMinimizer(objective, parameters)

	Bases: symfit.core.minimizers.BaseMinimizer

ABC for Minimizers that support bounds.

	
class symfit.core.minimizers.COBYLA(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyConstrainedMinimize

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s COBYLA algorithm.

	
class symfit.core.minimizers.ChainedMinimizer(*args, minimizers=None, **kwargs)

	Bases: symfit.core.minimizers.BaseMinimizer

A minimizer that consists of multiple other minimizers, each executed in
order.
This is valuable if you have minimizers that are not good at finding the
exact minimum such as NelderMead or
DifferentialEvolution.

	
__init__(*args, minimizers=None, **kwargs)

	
	Parameters

	
	minimizers – a Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence] of
BaseMinimizer objects, which need
to be run in order.

	*args – passed to symfit.core.minimizers.BaseMinimizer.__init__().

	**kwargs – passed to symfit.core.minimizers.BaseMinimizer.__init__().

	
execute(**minimizer_kwargs)

	Execute the chained-minimization. In order to pass options to the
seperate minimizers, they can be passed by using the
names of the minimizers as keywords. For example:

fit = Fit(self.model, self.xx, self.yy, self.ydata,
 minimizer=[DifferentialEvolution, BFGS])
fit_result = fit.execute(
 DifferentialEvolution={'seed': 0, 'tol': 1e-4, 'maxiter': 10},
 BFGS={'tol': 1e-4}
)

In case of multiple identical minimizers an index is added to each
keyword argument to make them identifiable. For example, if:

minimizer=[BFGS, DifferentialEvolution, BFGS])

then the keyword arguments will be ‘BFGS’, ‘DifferentialEvolution’,
and ‘BFGS_2’.

	Parameters

	minimizer_kwargs – Minimizer options to be passed to the
minimzers by name

	Returns

	an instance of FitResults.

	
class symfit.core.minimizers.ConstrainedMinimizer(*args, constraints=None, **kwargs)

	Bases: symfit.core.minimizers.BaseMinimizer

ABC for Minimizers that support constraints

	
__init__(*args, constraints=None, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
class symfit.core.minimizers.DifferentialEvolution(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.GlobalMinimizer, symfit.core.minimizers.BoundedMinimizer

A wrapper around scipy.optimize.differential_evolution() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution].

	
execute(*, mutation=(0.423, 1.053), init='latinhypercube', strategy='rand1bin', popsize=40, recombination=0.95, polish=False, **de_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
class symfit.core.minimizers.DummyModel(params)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
static __new__(_cls, params)

	Create new instance of DummyModel(params,)

	
__repr__()

	Return a nicely formatted representation string

	
params

	Alias for field number 0

	
class symfit.core.minimizers.GlobalMinimizer(*args, **kwargs)

	Bases: symfit.core.minimizers.BaseMinimizer

A minimizer that looks for a global minimum, instead of a local one.

	
__init__(*args, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
class symfit.core.minimizers.GradientMinimizer(*args, jacobian=None, **kwargs)

	Bases: symfit.core.minimizers.BaseMinimizer

ABC for Minizers that support the use of a jacobian

	
__init__(*args, jacobian=None, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
resize_jac(func)

	Removes values with identical indices to fixed parameters from the
output of func. func has to return the jacobian of a scalar function.

	Parameters

	func – Jacobian function to be wrapped. Is assumed to be the
jacobian of a scalar function.

	Returns

	Jacobian corresponding to non-fixed parameters only.

	
class symfit.core.minimizers.LBFGSB(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyGradientMinimize, symfit.core.minimizers.BoundedMinimizer

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s LBFGSB algorithm.

	
execute(**minimize_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
classmethod method_name()

	Returns the name of the minimize method this object represents. This is
needed because the name of the object is not always exactly what needs
to be passed on to scipy as a string.
:return:

	
class symfit.core.minimizers.MINPACK(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.GradientMinimizer, symfit.core.minimizers.BoundedMinimizer

Wrapper to scipy’s implementation of MINPACK, since it is the industry
standard.

	
__init__(*args, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
execute(**minpack_options)

	
	Parameters

	**minpack_options – Any named arguments to be passed to leastsqbound

	
class symfit.core.minimizers.NelderMead(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.BaseMinimizer

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s NelderMead algorithm.

	
classmethod method_name()

	Returns the name of the minimize method this object represents. This is
needed because the name of the object is not always exactly what needs
to be passed on to scipy as a string.
:return:

	
class symfit.core.minimizers.Powell(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.BaseMinimizer

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s Powell algorithm.

	
class symfit.core.minimizers.SLSQP(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyConstrainedMinimize, symfit.core.minimizers.GradientMinimizer, symfit.core.minimizers.BoundedMinimizer

Wrapper around scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s SLSQP algorithm.

	
__init__(*args, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
execute(**minimize_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
scipy_constraints(constraints)

	Returns all constraints in a scipy compatible format.

	Returns

	dict of scipy compatible constraints, including jacobian term.

	
class symfit.core.minimizers.ScipyConstrainedMinimize(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.ConstrainedMinimizer

Base class for scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s constrained-minimizers.

	
__init__(*args, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
execute(**minimize_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
scipy_constraints(constraints)

	Returns all constraints in a scipy compatible format.

	Returns

	dict of scipy compatible statements.

	
class symfit.core.minimizers.ScipyGradientMinimize(*args, **kwargs)

	Bases: symfit.core.minimizers.ScipyMinimize, symfit.core.minimizers.GradientMinimizer

Base class for scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]’s gradient-minimizers.

	
__init__(*args, **kwargs)

	
	Parameters

	
	objective – Objective function to be used.

	parameters – List of Parameter instances

	
execute(**minimize_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
class symfit.core.minimizers.ScipyMinimize(*args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mix-in class that handles the execute calls to scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize].

	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
execute(bounds=None, jacobian=None, constraints=None, *, tol=1e-09, **minimize_options)

	Calls the wrapped algorithm.

	Parameters

	
	bounds – The bounds for the parameters. Usually filled by
BoundedMinimizer.

	jacobian – The Jacobian. Usually filled by
ScipyGradientMinimize.

	**minimize_options – Further keywords to pass to
scipy.optimize.minimize() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize]. Note that your method will
usually be filled by a specific subclass.

	
list2kwargs(func)

	Given an objective function func, make sure it is always called via
keyword arguments with the relevant parameter names.

	Parameters

	func – Function to be wrapped to keyword only calls.

	Returns

	wrapped function

	
classmethod method_name()

	Returns the name of the minimize method this object represents. This is
needed because the name of the object is not always exactly what needs
to be passed on to scipy as a string.
:return:

Objectives

	
class symfit.core.objectives.BaseObjective(model, data)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

ABC for objective functions. Implements basic data handling.

	
__call__(**parameters)

	Evaluate the objective function for given parameter values.

	Parameters

	parameters –

	Returns

	float

	
__init__(model, data)

	
	Parameters

	
	model – symfit style model.

	data – data for all the variables of the model.

	
dependent_data

	Read-only Property

	Returns

	Data belonging to each dependent variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
independent_data

	Read-only Property

	Returns

	Data belonging to each independent variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
sigma_data

	Read-only Property

	Returns

	Data belonging to each sigma variable as a dict with
variable names as key, data as value.

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
class symfit.core.objectives.GradientObjective(model, data)

	Bases: symfit.core.objectives.BaseObjective

ABC for objectives that support gradient methods.

	
eval_jacobian(**parameters)

	Evaluate the jacobian for given parameter values.

	Parameters

	parameters –

	Returns

	float

	
class symfit.core.objectives.LeastSquares(model, data)

	Bases: symfit.core.objectives.GradientObjective

Objective representing the \(\chi^2\) of a model.

	
__call__(*, flatten_components=True, **parameters)

	
	Parameters

	
	parameters – values of the
Parameter’s to evaluate \(\chi^2\) at.

	flatten_components – if True, return the total \(\chi^2\). If
False, return the \(\chi^2\) per component of the
BaseModel.

	Returns

	scalar or list of scalars depending on the value of flatten_components.

	
eval_jacobian(**parameters)

	Jacobian of \(\chi^2\) in the
Parameter’s (\(\nabla_\vec{p} \chi^2\)).

	Parameters

	parameters – values of the
Parameter’s to evaluate \(\nabla_\vec{p} \chi^2\) at.

	Returns

	np.array of length equal to the number of parameters..

	
class symfit.core.objectives.LogLikelihood(model, data)

	Bases: symfit.core.objectives.GradientObjective

Error function to be minimized by a minimizer in order to maximize
the log-likelihood.

	
__call__(**parameters)

	
	Parameters

	parameters – values for the fit parameters.

	Returns

	scalar value of log-likelihood

	
eval_jacobian(*, apply_func=<function nansum>, **parameters)

	Jacobian for log-likelihood is defined as \(\nabla_{\vec{p}}(\log(L(\vec{p} | \vec{x})))\).

	Parameters

	
	parameters – values for the fit parameters.

	apply_func – Function to apply to each component before returning it.
The default is to sum away along the datapoint dimension using np.nansum.

	Returns

	array of length number of Parameter’s in the model, with all partial derivatives evaluated at p, data.

	
class symfit.core.objectives.MinimizeModel(model, *args, **kwargs)

	Bases: symfit.core.objectives.BaseObjective

Objective to use when the model itself is the quantity that should be
minimized. This is only supported for scalar models.

	
__call__(**parameters)

	Evaluate the objective function for given parameter values.

	Parameters

	parameters –

	Returns

	float

	
__init__(model, *args, **kwargs)

	
	Parameters

	
	model – symfit style model.

	data – data for all the variables of the model.

	
class symfit.core.objectives.VectorLeastSquares(model, data)

	Bases: symfit.core.objectives.GradientObjective

Implemented for MINPACK only. Returns the residuals/sigma before squaring
and summing, rather then chi2 itself.

	
__call__(*, flatten_components=True, **parameters)

	Returns the value of the square root of \(\chi^2\), summing over the components.

This function now supports setting variables to None.

	Parameters

	
	p – array of parameter values.

	flatten_components – If True, summing is performed over the data indices (default).

	Returns

	\(\sqrt(\chi^2)\)

	
eval_jacobian(**parameters)

	Evaluate the jacobian for given parameter values.

	Parameters

	parameters –

	Returns

	float

Support

This module contains support functions and convenience methods used
throughout symfit. Some are used predominantly internally, others are
designed for users.

	
class symfit.core.support.D

	Bases: sympy.core.function.Derivative [https://docs.sympy.org/latest/modules/core.html#sympy.core.function.Derivative]

Convenience wrapper for sympy.Derivative. Used most notably in defining
ODEModel’s.

	
class symfit.core.support.RequiredKeyword

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Flag variable to indicate that this is a required keyword.

	
exception symfit.core.support.RequiredKeywordError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Error raised in case a keyword-only argument is not treated as such.

	
class symfit.core.support.cached_property(*args, **kwargs)

	Bases: property [https://docs.python.org/3/library/functions.html#property]

A property which cashes the output of the first ever call and always returns
that value from then on, unless delete is called on the attribute.

This is typically used in converting sympy code into scipy compatible
code, which is computationally a very expensive step we would like to
perform only once.

Does not allow setting of the attribute.

	
__delete__(obj)

	Calling delete on the attribute will delete the cache.
:param obj: parent object.

	
__get__(obj, objtype=None)

	In case of a first call, this will call the decorated function and
return it’s output. On every subsequent call, the same output will be
returned.

	Parameters

	
	obj – the parent object this property is attached to.

	objtype –

	Returns

	Output of the first call to the decorated function.

	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
class symfit.core.support.deprecated(replacement=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Decorator to raise a DeprecationWarning.

	
__call__(func)

	Call self as a function.

	
__init__(replacement=None)

	
	Parameters

	replacement – The function which should now be used instead.

	
symfit.core.support.jacobian(expr, symbols)

	Derive a symbolic expr w.r.t. each symbol in symbols. This returns a symbolic jacobian vector.

	Parameters

	
	expr – A sympy Expr.

	symbols – The symbols w.r.t. which to derive.

	
symfit.core.support.key2str(target)

	In symfit there are many dicts with symbol: value pairs.
These can not be used immediately as **kwargs, even though this would make
a lot of sense from the context.
This function wraps such dict to make them usable as **kwargs immediately.

	Parameters

	target – Mapping to be made save

	Returns

	Mapping of str(symbol): value pairs.

	
class symfit.core.support.keywordonly(**kwonly_arguments)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Decorator class which wraps a python 2 function into one with keyword-only arguments.

Example:

@keywordonly(floor=True)
def f(x, **kwargs):
 floor = kwargs.pop('floor')
 return np.floor(x**2) if floor else x**2

This decorator is not much more than:

floor = kwargs.pop('floor') if 'floor' in kwargs else True

However, I prefer it’s usage because:

	it’s clear from reading the function declaration there is an option to provide this
argument. The information on possible keywords is where you’d expect it to be.

	you’re guaranteed that the pop works.

	It is fully inspect compatible such that sphynx is able to index these
properly as keyword only arguments just like it would for native py3
keyword only arguments.

Please note that this decorator needs a ** argument on the wrapped function
in order to work.

	
__call__(func)

	Returns a decorated version of func, who’s signature now includes the
keyword-only arguments.

	Parameters

	func – the function to be decorated

	Returns

	the decorated function

	
__init__(**kwonly_arguments)

	Initialize self. See help(type(self)) for accurate signature.

	
symfit.core.support.parameters(names, **kwargs)

	Convenience function for the creation of multiple parameters. For more
control, consider using symbols(names, cls=Parameter, **kwargs) directly.

The Parameter attributes value, min, max and fixed can also be provided
directly. If given as a single value, the same value will be set for all
Parameter’s. When a sequence, it must be of the same length as the number of
parameters created.

	Example::

	x1, x2 = parameters(‘x1, x2’, value=[2.0, 1.3], min=0.0)

	Parameters

	
	names – string of parameter names.
Example: a, b = parameters(‘a, b’)

	kwargs – kwargs to be passed onto sympy.core.symbol.symbols() [https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols].
value, min and max will be handled separately if they are sequences.

	Returns

	iterable of symfit.core.argument.Parameter objects

	
symfit.core.support.seperate_symbols(func)

	Seperate the symbols in symbolic function func. Return them in alphabetical
order.

	Parameters

	func – scipy symbolic function.

	Returns

	(vars, params), a tuple of all variables and parameters, each
sorted in alphabetical order.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – only symfit Variable and Parameter are allowed, not sympy
Symbols.

	
symfit.core.support.sympy_to_py(func, vars, params)

	Turn a symbolic expression into a Python lambda function,
which has the names of the variables and parameters as it’s argument names.

	Parameters

	
	func – sympy expression

	vars – variables in this model

	params – parameters in this model

	Returns

	lambda function to be used for numerical evaluation of the model. Ordering of the arguments will be vars
first, then params.

	
symfit.core.support.sympy_to_scipy(func, vars, params)

	Convert a symbolic expression to one scipy digs. Not used by symfit any more.

	Parameters

	
	func – sympy expression

	vars – variables

	params – parameters

	Returns

	Scipy-style function to be used for numerical evaluation of the model.

	
symfit.core.support.variables(names, **kwargs)

	Convenience function for the creation of multiple variables. For more
control, consider using symbols(names, cls=Variable, **kwargs) directly.

	Parameters

	
	names – string of variable names.
Example: x, y = variables(‘x, y’)

	kwargs – kwargs to be passed onto sympy.core.symbol.symbols() [https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols]

	Returns

	iterable of symfit.core.argument.Variable objects

Distributions

Some common distributions are defined in this module. That way, users can easily build
more complicated expressions without making them look hard.

I have deliberately chosen to start these function with a capital, e.g.
Gaussian instead of gaussian, because this makes the resulting expressions more
readable.

	
symfit.distributions.Exp(x, l)

	Exponential Distribution pdf.
:param x: free variable.
:param l: rate parameter.
:return: sympy.Expr for an Exponential Distribution pdf.

	
symfit.distributions.Gaussian(x, mu, sig)

	Gaussian pdf.
:param x: free variable.
:param mu: mean of the distribution.
:param sig: standard deviation of the distribution.
:return: sympy.Expr for a Gaussian pdf.

Contrib

Contrib modules are modules and extensions to symfit provided by other people.
This usually means the code is of slightly less quality, and may not survive
future versions.

	
class symfit.contrib.interactive_guess.interactive_guess.InteractiveGuess2D(*args, n_points=100, **kwargs)

	Bases: symfit.core.fit.TakesData

A class that provides an graphical, interactive way of guessing initial
fitting parameters.

	
__init__(*args, n_points=100, **kwargs)

	Create a matplotlib window with sliders for all parameters
in this model, so that you may graphically guess initial fitting
parameters. n_points is the number of points drawn for the plot.
Data points are plotted as blue points, the proposed model as
a red line.

Slider extremes are taken from the parameters where possible. If
these are not provided, the minimum is 0; and the maximum is value*2.
If no initial value is provided, it defaults to 1.

This will modify the values of the parameters present in model.

	Parameters

	n_points (int [https://docs.python.org/3/library/functions.html#int]) – The number of points used for drawing the
fitted function.

	
__str__()

	Represent the guesses in a human readable way.

	Returns

	string with the guessed values.

	
execute(*, block=True, show=True, **kwargs)

	Execute the interactive guessing procedure.

	Parameters

	
	show (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to show the figure. Useful for testing.

	block – Blocking call to matplotlib

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 symfit	

 	
 	
 symfit.contrib.interactive_guess.interactive_guess	

 	
 	
 symfit.core.argument	

 	
 	
 symfit.core.fit	

 	
 	
 symfit.core.fit_results	

 	
 	
 symfit.core.minimizers	

 	
 	
 symfit.core.objectives	

 	
 	
 symfit.core.operators	

 	
 	
 symfit.core.support	

 	
 	
 symfit.distributions	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

_

 	
 	__call__() (symfit.core.argument.Parameter method)

 	(symfit.core.fit.BaseCallableModel method)

 	(symfit.core.fit.ODEModel method)

 	(symfit.core.objectives.BaseObjective method)

 	(symfit.core.objectives.LeastSquares method)

 	(symfit.core.objectives.LogLikelihood method)

 	(symfit.core.objectives.MinimizeModel method)

 	(symfit.core.objectives.VectorLeastSquares method)

 	(symfit.core.support.deprecated method)

 	(symfit.core.support.keywordonly method)

 	__delete__() (symfit.core.support.cached_property method)

 	__eq__() (symfit.core.fit.BaseModel method)

 	(symfit.core.fit.BaseNumericalModel method)

 	(symfit.core.fit_results.FitResults method)

 	__get__() (symfit.core.support.cached_property method)

 	__getattr__() (symfit.core.fit_results.FitResults method)

 	__getitem__() (symfit.core.fit.BaseModel method)

 	(symfit.core.fit.ODEModel method)

 	__getnewargs__() (symfit.core.minimizers.DummyModel method)

 	__init__() (symfit.contrib.interactive_guess.interactive_guess.InteractiveGuess2D method)

 	(symfit.core.argument.Argument method)

 	(symfit.core.argument.Parameter method)

 	(symfit.core.fit.BaseModel method)

 	(symfit.core.fit.BaseNumericalModel method)

 	(symfit.core.fit.Constraint method)

 	(symfit.core.fit.Fit method)

 	(symfit.core.fit.LinearLeastSquares method)

 	(symfit.core.fit.NonLinearLeastSquares method)

 	(symfit.core.fit.ODEModel method)

 	(symfit.core.fit.TakesData method)

 	(symfit.core.fit.TaylorModel method)

 	(symfit.core.fit_results.FitResults method)

 	(symfit.core.minimizers.BaseMinimizer method)

 	(symfit.core.minimizers.BasinHopping method)

 	(symfit.core.minimizers.ChainedMinimizer method)

 	(symfit.core.minimizers.ConstrainedMinimizer method)

 	(symfit.core.minimizers.GlobalMinimizer method)

 	(symfit.core.minimizers.GradientMinimizer method)

 	(symfit.core.minimizers.MINPACK method)

 	(symfit.core.minimizers.SLSQP method)

 	(symfit.core.minimizers.ScipyConstrainedMinimize method)

 	(symfit.core.minimizers.ScipyGradientMinimize method)

 	(symfit.core.minimizers.ScipyMinimize method)

 	(symfit.core.objectives.BaseObjective method)

 	(symfit.core.objectives.MinimizeModel method)

 	(symfit.core.support.cached_property method)

 	(symfit.core.support.deprecated method)

 	(symfit.core.support.keywordonly method)

 	
 	__iter__() (symfit.core.fit.BaseModel method)

 	(symfit.core.fit.ODEModel method)

 	__len__() (symfit.core.fit.BaseModel method)

 	__neg__() (symfit.core.fit.BaseModel method)

 	(symfit.core.fit.BaseNumericalModel method)

 	(symfit.core.fit.Constraint method)

 	(symfit.core.fit.ODEModel method)

 	__new__() (symfit.core.argument.Argument static method)

 	(symfit.core.argument.Parameter static method)

 	(symfit.core.minimizers.DummyModel static method)

 	__reduce__() (symfit.core.fit.BaseModel method)

 	(symfit.core.fit.BaseNumericalModel method)

 	(symfit.core.fit.Constraint method)

 	(symfit.core.fit.ODEModel method)

 	__repr__() (symfit.core.minimizers.DummyModel method)

 	__str__() (symfit.contrib.interactive_guess.interactive_guess.InteractiveGuess2D method)

 	(symfit.core.fit.BaseModel method)

 	(symfit.core.fit.ODEModel method)

 	(symfit.core.fit.TaylorModel method)

 	(symfit.core.fit_results.FitResults method)

A

 	
 	Argument (class in symfit.core.argument)

B

 	
 	BaseCallableModel (class in symfit.core.fit)

 	BaseFit (class in symfit.core.fit)

 	BaseMinimizer (class in symfit.core.minimizers)

 	BaseModel (class in symfit.core.fit)

 	BaseNumericalModel (class in symfit.core.fit)

 	
 	BaseObjective (class in symfit.core.objectives)

 	BasinHopping (class in symfit.core.minimizers)

 	best_fit_params() (symfit.core.fit.LinearLeastSquares method)

 	BFGS (class in symfit.core.minimizers)

 	BoundedMinimizer (class in symfit.core.minimizers)

 	bounds (symfit.core.fit.BaseModel attribute)

C

 	
 	cached_property (class in symfit.core.support)

 	call() (in module symfit.core.operators)

 	CallableModel (class in symfit.core.fit)

 	CallableNumericalModel (class in symfit.core.fit)

 	ChainedMinimizer (class in symfit.core.minimizers)

 	chi (symfit.core.fit.Model attribute)

 	chi_jacobian (symfit.core.fit.Model attribute)

 	
 	chi_squared (symfit.core.fit.Model attribute)

 	chi_squared_jacobian (symfit.core.fit.Model attribute)

 	COBYLA (class in symfit.core.minimizers)

 	ConstrainedMinimizer (class in symfit.core.minimizers)

 	Constraint (class in symfit.core.fit)

 	covariance() (symfit.core.fit_results.FitResults method)

 	covariance_matrix() (symfit.core.fit.HasCovarianceMatrix method)

 	(symfit.core.fit.LinearLeastSquares method)

D

 	
 	D (class in symfit.core.support)

 	data_shapes (symfit.core.fit.TakesData attribute)

 	dependent_data (symfit.core.fit.TakesData attribute)

 	(symfit.core.objectives.BaseObjective attribute)

 	
 	deprecated (class in symfit.core.support)

 	DifferentialEvolution (class in symfit.core.minimizers)

 	DummyModel (class in symfit.core.minimizers)

E

 	
 	error_func() (symfit.core.fit.BaseFit method)

 	eval_components() (symfit.core.fit.BaseCallableModel method)

 	(symfit.core.fit.ODEModel method)

 	eval_jacobian() (symfit.core.fit.BaseCallableModel method)

 	(symfit.core.fit.BaseFit method)

 	(symfit.core.fit.Model method)

 	(symfit.core.objectives.GradientObjective method)

 	(symfit.core.objectives.LeastSquares method)

 	(symfit.core.objectives.LogLikelihood method)

 	(symfit.core.objectives.VectorLeastSquares method)

 	execute() (symfit.contrib.interactive_guess.interactive_guess.InteractiveGuess2D method)

 	(symfit.core.fit.BaseFit method)

 	(symfit.core.fit.Fit method)

 	(symfit.core.fit.LinearLeastSquares method)

 	(symfit.core.fit.NonLinearLeastSquares method)

 	(symfit.core.minimizers.BaseMinimizer method)

 	(symfit.core.minimizers.BasinHopping method)

 	(symfit.core.minimizers.ChainedMinimizer method)

 	(symfit.core.minimizers.DifferentialEvolution method)

 	(symfit.core.minimizers.LBFGSB method)

 	(symfit.core.minimizers.MINPACK method)

 	(symfit.core.minimizers.SLSQP method)

 	(symfit.core.minimizers.ScipyConstrainedMinimize method)

 	(symfit.core.minimizers.ScipyGradientMinimize method)

 	(symfit.core.minimizers.ScipyMinimize method)

 	
 	Exp() (in module symfit.distributions)

F

 	
 	finite_difference() (symfit.core.fit.BaseCallableModel method)

 	
 	Fit (class in symfit.core.fit)

 	FitResults (class in symfit.core.fit_results)

G

 	
 	Gaussian() (in module symfit.distributions)

 	GlobalMinimizer (class in symfit.core.minimizers)

 	
 	GradientMinimizer (class in symfit.core.minimizers)

 	GradientObjective (class in symfit.core.objectives)

H

 	
 	HasCovarianceMatrix (class in symfit.core.fit)

I

 	
 	independent_data (symfit.core.fit.TakesData attribute)

 	(symfit.core.objectives.BaseObjective attribute)

 	
 	initial_guesses (symfit.core.fit.TakesData attribute)

 	InteractiveGuess2D (class in symfit.contrib.interactive_guess.interactive_guess)

 	is_linear() (symfit.core.fit.LinearLeastSquares static method)

J

 	
 	jacobian (symfit.core.fit.Constraint attribute)

 	(symfit.core.fit.Model attribute)

 	
 	jacobian() (in module symfit.core.support)

K

 	
 	key2str() (in module symfit.core.support)

 	
 	keywordonly (class in symfit.core.support)

L

 	
 	LBFGSB (class in symfit.core.minimizers)

 	LeastSquares (class in symfit.core.objectives)

 	
 	LinearLeastSquares (class in symfit.core.fit)

 	list2kwargs() (symfit.core.minimizers.ScipyMinimize method)

 	LogLikelihood (class in symfit.core.objectives)

M

 	
 	method_name() (symfit.core.minimizers.LBFGSB class method)

 	(symfit.core.minimizers.NelderMead class method)

 	(symfit.core.minimizers.ScipyMinimize class method)

 	
 	MinimizeModel (class in symfit.core.objectives)

 	MINPACK (class in symfit.core.minimizers)

 	Model (class in symfit.core.fit)

 	ModelError

N

 	
 	NelderMead (class in symfit.core.minimizers)

 	NonLinearLeastSquares (class in symfit.core.fit)

 	numerical_chi (symfit.core.fit.Model attribute)

 	numerical_chi_jacobian (symfit.core.fit.Model attribute)

 	numerical_chi_squared (symfit.core.fit.Model attribute)

 	
 	numerical_chi_squared_jacobian (symfit.core.fit.Model attribute)

 	numerical_components (symfit.core.fit.CallableModel attribute)

 	(symfit.core.fit.Constraint attribute)

 	numerical_components() (symfit.core.fit.BaseCallableModel method)

 	numerical_jacobian (symfit.core.fit.Constraint attribute)

 	(symfit.core.fit.Model attribute)

O

 	
 	ODEModel (class in symfit.core.fit)

P

 	
 	p0 (symfit.core.fit.TaylorModel attribute)

 	Parameter (class in symfit.core.argument)

 	parameters() (in module symfit.core.support)

 	
 	params (symfit.core.fit.TaylorModel attribute)

 	(symfit.core.minimizers.DummyModel attribute)

 	Powell (class in symfit.core.minimizers)

R

 	
 	r_squared() (in module symfit.core.fit)

 	RequiredKeyword (class in symfit.core.support)

 	
 	RequiredKeywordError

 	resize_jac() (symfit.core.minimizers.GradientMinimizer method)

S

 	
 	scipy_constraints() (symfit.core.minimizers.ScipyConstrainedMinimize method)

 	(symfit.core.minimizers.SLSQP method)

 	ScipyConstrainedMinimize (class in symfit.core.minimizers)

 	ScipyGradientMinimize (class in symfit.core.minimizers)

 	ScipyMinimize (class in symfit.core.minimizers)

 	seperate_symbols() (in module symfit.core.support)

 	shared_parameters (symfit.core.fit.BaseModel attribute)

 	(symfit.core.fit.BaseNumericalModel attribute)

 	sigma_data (symfit.core.fit.TakesData attribute)

 	(symfit.core.objectives.BaseObjective attribute)

 	SLSQP (class in symfit.core.minimizers)

 	
 	stdev() (symfit.core.fit_results.FitResults method)

 	symfit.contrib.interactive_guess.interactive_guess (module)

 	symfit.core.argument (module)

 	symfit.core.fit (module)

 	symfit.core.fit_results (module)

 	symfit.core.minimizers (module)

 	symfit.core.objectives (module)

 	symfit.core.operators (module)

 	symfit.core.support (module)

 	symfit.distributions (module)

 	sympy_to_py() (in module symfit.core.support)

 	sympy_to_scipy() (in module symfit.core.support)

T

 	
 	TakesData (class in symfit.core.fit)

 	
 	TaylorModel (class in symfit.core.fit)

V

 	
 	value() (symfit.core.fit_results.FitResults method)

 	Variable (class in symfit.core.argument)

 	variables() (in module symfit.core.support)

 	
 	variance() (symfit.core.fit_results.FitResults method)

 	vars (symfit.core.fit.BaseModel attribute)

 	VectorLeastSquares (class in symfit.core.objectives)

 _static/piecewise_continuous.png
16

14

12

10

_static/piecewise_differentiable.png
20.0

17.5

15.0

125

10.0

75

5.0

2.5

0.0

_static/ode_kinetics_fit.png
X1/m

10

0.8

0.6

0.4

02

0.0

— A
— [B]

10

20

t /min

50

60

70

80

_static/ode_model_fit.png
006

005

004

003

002

001

0.00

-0.01
-100

0

100

200

300

400

500

— A
— B

600

_static/up-pressed.png

_static/plus.png

_static/polynomial_surface_fit.png
-200

-200
- 160
- 150
- 120
- 100
80
50
40

_images/gaussian_intro.png
400

350

300

250

200

150

100

50

22

_images/global_fitting.png
>

120

100

Global Fitting, MWE

10

_images/callable_numerical_model.png
20.0

17.5

15.0

125

10.0

75

5.0

2.5

0.0

_static/up.png

_images/fourier_series.png
10

0.8

0.6

0.4

02

0.0

_images/interactive_guess_ODE.png
) Figure 1

0.8

0.6

0.4

02

0.0

o 10 20 30 40 50 60 70
3 —

al€d $a=m

1

_images/interactive_guess_vector_2D.png
& Figure 1

2000

1500

1000

500

y1(x) =k(=X0 +x)?

ya(x) = —xo+Xx

_images/linear_model_fit.png
2000

1500

1000

500

0 20 40 60 80 100

nav.xhtml

 Table of Contents

 		
 Welcome to symfit’s documentation!

 		
 Introduction

 		
 Technical Reasons

 		
 Installation

 		
 Contrib module

 		
 Dependencies

 		
 Tutorial

 		
 Simple Example

 		
 Initial Guess

 		
 Accessing the Results

 		
 Evaluating the Model

 		
 Named Models

 		
 symfit exposes sympy.api

 		
 Fitting Types

 		
 Fit (Least Squares)

 		
 Constrained Least Squares Fit

 		
 (Non)LinearLeastSquares

 		
 Likelihood

 		
 Minimize/Maximize

 		
 ODE Fitting

 		
 Fitting multiple datasets

 		
 Global Minimization

 		
 Constrained Basin-Hopping

 		
 Advanced usage

 		
 What if the model is unnamed?

 		
 Style Guide & Best Practices

 		
 Style Guide

 		
 Best Practices

 		
 Technical Notes

 		
 On Likelihood Fitting

 		
 On Standard Deviations

 		
 Analytical Example

 		
 Comparison to Mathematica

 		
 Internal API Structure

 		
 Fitting 101

 		
 Objectives

 		
 Minimizers

 		
 Example

 		
 Dependencies and Credits

 		
 Examples

 		
 Model Examples

 		
 Example: Fourier Series

 		
 Example: Piecewise continuous function

 		
 Example: Polynomial Surface Fit

 		
 Example: ODEModel for Reaction Kinetics

 		
 Example: CallableNumericalModel

 		
 Interactive Guess Module

 		
 Example: Interactive Guesses ODE

 		
 Example: Interactive Guesses Vector Model

 		
 Module Documentation

 		
 Fit

 		
 Argument

 		
 Operators

 		
 Fit Results

 		
 Minimizers

 		
 Objectives

 		
 Support

 		
 Distributions

 		
 Contrib

_images/ode_double_eq_integrated.png

_images/ode_kinetics_fit.png
X1/m

10

0.8

0.6

0.4

02

0.0

— A
— [B]

10

20

t /min

50

60

70

80

_images/linear_model_fit_data.png
2000

1500

1000 ot .

0 20 40 60 80 100

_images/ode_dampened_harmonic_oscillator.png

_images/piecewise_differentiable.png
20.0

17.5

15.0

125

10.0

75

5.0

2.5

0.0

_images/polynomial_surface_fit.png
-200

-200
- 160
- 150
- 120
- 100
80
50
40

_images/ode_model_fit.png
006

005

004

003

002

001

0.00

-0.01
-100

0

100

200

300

400

500

— A
— B

600

_images/piecewise_continuous.png
16

14

12

10

_static/ajax-loader.gif

_static/callable_numerical_model.png
20.0

17.5

15.0

125

10.0

75

5.0

2.5

0.0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/fourier_series.png
10

0.8

0.6

0.4

02

0.0

_static/down.png

_static/global_fitting.png
>

120

100

Global Fitting, MWE

10

_static/interactive_guess_ODE.png
) Figure 1

0.8

0.6

0.4

02

0.0

o 10 20 30 40 50 60 70
3 —

al€d $a=m

1

_static/gaussian_intro.png
400

350

300

250

200

150

100

50

22

_static/linear_model_fit_data.png
2000

1500

1000 ot .

0 20 40 60 80 100

_static/minus.png

_static/interactive_guess_vector_2D.png
& Figure 1

2000

1500

1000

500

y1(x) =k(=X0 +x)?

ya(x) = —xo+Xx

_static/linear_model_fit.png
2000

1500

1000

500

0 20 40 60 80 100

_static/ode_first_order_fit.png
[AIM

10

08

06

04

02

00

10

t/min

70

_static/ode_dampened_harmonic_oscillator.png

_static/ode_double_eq_integrated.png

