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CHAPTER 1

Introduction

Existing fitting modules are not very pythonic in their API and can be difficult for humans to use. This project aims
to marry the power of scipy.optimize with the readability of SymPy to create a highly readable and easy to use
fitting package which works for projects of any scale.

symfit makes it extremely easy to provide guesses for your parameters and to bound them to a certain range:

a = Parameter(1.0, min=0.0, max=5.0)

To define models to fit to:

x = Variable()
A = Parameter()
sig = Parameter(1.0, min=0.0, max=5.0)
x0 = Parameter(1.0, min=0.0)

# Gaussian distrubution
model = A * exp(-(x - x0)**2/(2 * sig**2))

And finally, to execute the fit:

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

And to evaluate the model using the best fit parameters:

y = model(x=xdata, **fit_result.params)

As your models become more complicated, symfit really comes into it’s own. For example, vector valued functions
are both easy to define and beautiful to look at:

model = {
y_1: x**2,
y_2: 2*x

}

And constrained maximization has never been this easy:

x, y = parameters('x, y')

model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [

Eq(x**3 - y, 0), # Eq: ==
Ge(y - 1, 0), # Ge: >=

]

3
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fit = Maximize(model, constraints=constraints)

1.1 Technical Reasons

On a more technical note, this symbolic approach turns out to have great technical advantages over using scipy directly.
In order to fit, the algorithm needs the Jacobian: a matrix containing the derivatives of your model in it’s parameters.
Because of the symbolic nature of symfit, this is determined for you on the fly, saving you the trouble of having
to determine the derivatives yourself. Furthermore, having this Jacobian allows good estimation of the errors in your
parameters, something scipy does not always succeed in.

1.1. Technical Reasons 5
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CHAPTER 2

Installation

If you are using pip, you can simply run

pip install symfit

from your terminal. If you are using linux and do not use pip, you can download the source from
https://github.com/tBuLi/symfit and install manually.

Are you not on linux and you do not use pip? That’s your own mess.

2.1 Dependencies

pip install sympy
pip install numpy
pip install scipy

7
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CHAPTER 3

Tutorial

3.1 Simple Example

The example below shows how easy it is to define a model that we could fit to.

from symfit.api import Parameter, Variable

a = Parameter()
b = Parameter()
x = Variable()
model = a * x + b

Lets fit this model to some generated data.

from symfit.api import Fit
import numpy as np

xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
ydata = a_vec * xdata + b_vec # Point scattered around the line 5 * x + 105

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

Printing fit_result will give a full report on the values for every parameter, including the uncertainty, and quality
of the fit.

3.2 Initial Guess

For fitting to work as desired you should always give a good initial guess for a parameter. The Parameter object
can therefore be initiated with the following keywords:

• value the initial guess value.

• min Minimal value for the parameter.

• max Maximal value for the parameter.

• fixed Fix the value of the parameter during the fitting to value.

In the example above, we might change our Parameter‘s to the following after looking at a plot of the data:

9
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k = Parameter(value=4, min=3, max=6)

l, m = parameters('b, c')
l.value = 60
l.fixed = True

3.3 Accessing the Results

A call to Fit.execute() returns a FitResults instance. This object holds all information about the fit. The
fitting process does not modify the Parameter objects. In the above example, k.value will still be 4.0 and not
the value we obtain after fitting. To get the value of fit parameters we can do:

>>> print(fit_result.params.a)
>>> 14.66946...
>>> print(fit_result.params.a_stdev)
>>> 0.3367571...
>>> print(fit_result.params.b)
>>> 104.6558...
>>> print(fit_result.params.b_stdev)
>>> 19.49172...
>>> print(fit_result.r_squared)
>>> 0.950890866472

For more FitResults, see the API docs.

3.4 Evaluating the Model

With these parameters, we could now evaluate the model with these parameters so we can make a plot of it. In order
to do this, we simply call the model with these values:

import matplotlib.pyplot as plt

y = model(x=xdata, a=fit_result.params.a, b=fit_result.params.b)
plt.plot(xdata, y)
plt.show()

The model has to be called by keyword arguments to prevent any ambiguity. So the following does not work:

y = model(xdata, fit_result.params.a, fit_result.params.b)

To make life easier, there is a nice shorthand notation to immediately use a fit result:

y = model(x=xdata, **fit_result.params)

This unpacks the .params object as a dict. For more info view ParameterDict.

3.5 Named Models

More complicated models are also relatively easy to deal with by using named models. Let’s try our luck with a
bivariate normal distribution:

3.3. Accessing the Results 11
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from symfit import parameters, variables, exp, pi, sqrt

x, y, p = variables('x, y, p')
mu_x, mu_y, sig_x, sig_y, rho = parameters('mu_x, mu_y, sig_x, sig_y, rho')

z = (x - mu_x)**2/sig_x**2 + (y - mu_y)**2/sig_y**2 - 2 * rho * (x - mu_x) * (y - mu_y)/(sig_x * sig_y)
model = {p: exp(- z / (2 * (1 - rho**2))) / (2 * pi * sig_x * sig_y * sqrt(1 - rho**2))}

fit = Fit(model, x=xdata, y=ydata, p=pdata)

By using the magic of named models, the flow of information is still very clear, even with such a complicated function.

This syntax also supports vector valued functions:

model = {y_1: a * x**2, y_2: 2 * x * b}

One thing to note about such models is that now model(x=xdata) obviously no longer works as type(model)
== dict. There is a preferred way to resolve this. If any kind of fitting object has been initiated, it will have a
.model atribute containing an instance of Model. This can again be called:

model = {y_1: a * x**2, y_2: 2 * x * b}
fit = Fit(model, x=xdata)
fit_result = fit.execute()

y_1, y_2 = fit.model(x=xdata, **fit_result.params)

This returns a tuple with the components evaluated so through the magic of tuple unpacking‘‘y_1‘‘ and y_2 contain
the evaluated fit. Nice!

If for some reason no Fit is initiated you can make a Model object yourself:

from symfit import Model

model_dict = {y_1: a * x**2, y_2: 2 * x * b}
model = Model.from_dict(model_dict)

y_1, y_2 = fit.model(x=xdata, a=2.4, b=0.1)

3.6 symfit exposes sympy.api

symfit exposes the sympy api as well, so mathematical expressions such as exp, sin and pi are importable from
symfit as well. For more, read the sympy docs.

3.6. symfit exposes sympy.api 13
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CHAPTER 4

Fitting Types

4.1 Fit (LeastSquares)

The default fitting object does least-squares fitting:

from symfit import parameters, variables, Fit
import numpy as np

# Define a model to fit to.
a, b = parameters('a, b')
x = variables('x')
model = a * x + b

# Generate some data
xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
ydata = a_vec * xdata + b_vec # Point scattered around the line 5 * x + 105

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()

The Fit object also supports standard deviations. In order to provide these, it’s nicer to use a named model:

a, b = parameters('a, b')
x, y = variables('x, y')
model = {y: a * x + b}

fit = Fit(model, x=xdata, y=ydata, sigma_y=sigma)

symfit assumes these sigma to be from measurement errors by default, and not just as a relative weight. This means
the standard deviations on parameters are calculated assuming the absolute size of sigma is significant. This is the case
for measurement errors and therefore for most use cases symfit was designed for. If you only want to use the sigma
for relative weights, then you can use absolute_sigma=False as a keyword argument.

Please note that this is the opposite of the convention used by scipy’s curve_fit. Looking through their mailing list
this seems to have been implemented the ‘wrong’ way for historical reasons, and was understandably never changed
so as not to loose backwards compatibility. Since this is a new project, we don’t have that problem.

Fit currently simply wraps NumericalLeastSquares, but might become more intelligent in the future.

15
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4.2 (Non)LinearLeastSquares

The LinearLeastSquares implements the analytical solution to Least Squares fitting. When your model is linear
in it’s parameters, consider using this rather than the default NumericalLeastSquares since this gives the exact
solution in one step, no iteration and no guesses needed.

NonLinearLeastSquares is the generalization to non-linear models. It works by approximating the model by
a linear one around the value of your guesses and repeating that process iteratively. This process is therefore very
sensitive to getting good initial guesses.

Note’s on these objects:

• Use NonLinearLeastSquares instead of LinearLeastSquares unless you have a reason not to.
NonLinearLeastSquares will behave exactly the same as LinearLeastSquares when the model
is linear.

• Bounds are currently ignored by both. This is because for linear models there can only be one solution. For
non-linear models it simply hasn’t been considered yet.

• When performance matters, use NumericalLeastSquares instead of NonLinearLeastSquares.
These analytical objects are implemented in pure python and are therefore massively outgunned by
NumericalLeastSquares which is ultimately a wrapper to MINPACK.

4.3 Likelihood

Given a dataset and a model, what values should the model’s parameters have to make the observed data most likely?
This is the principle of maximum likelihood and the question the Likelihood object can answer for you.

Example:

from symfit import Parameter, Variable, Likelihood, exp
import numpy as np

# Define the model for an exponential distribution (numpy style)
beta = Parameter()
x = Variable()
model = (1 / beta) * exp(-x / beta)

# Draw 100 samples from an exponential distribution with beta=5.5
data = np.random.exponential(5.5, 100)

# Do the fitting!
fit = Likelihood(model, data)
fit_result = fit.execute()

Off-course fit_result is a normal FitResults object. Because scipy.optimize.minimize is used to
do the actual work, bounds on parameters, and even constraints are supported. For more information on this subject,
check out symfit‘s Minimize.

4.4 Minimize/Maximize

Minimize or Maximize a model subject to bounds and/or constraints. It is a wrapper to
scipy.optimize.minimize. As an example I present an example from the scipy docs.

4.2. (Non)LinearLeastSquares 17

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html


symfit Documentation, Release 0.3.0

Suppose we want to maximize the following function:

𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 2𝑥− 𝑥2 − 2𝑦2

Subject to the following constraints:

𝑥3 − 𝑦 = 0

𝑦 − 1 >= 0

In SciPy code the following lines are needed:

def func(x, sign=1.0):
""" Objective function """
return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

def func_deriv(x, sign=1.0):
""" Derivative of objective function """
dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
dfdx1 = sign*(2*x[0] - 4*x[1])
return np.array([ dfdx0, dfdx1 ])

cons = ({'type': 'eq',
'fun' : lambda x: np.array([x[0]**3 - x[1]]),
'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
{'type': 'ineq',
'fun' : lambda x: np.array([x[1] - 1]),
'jac' : lambda x: np.array([0.0, 1.0])})

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
constraints=cons, method='SLSQP', options={'disp': True})

Takes a couple of read-throughs to make sense, doesn’t it? Let’s do the same problem in symfit:

from symfit import parameters, Maximize, Eq, Ge

x, y = parameters('x, y')
model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [

Eq(x**3 - y, 0),
Ge(y - 1, 0),

]

fit = Maximize(model, constraints=constraints)
fit_result = fit.execute()

Done! symfit will determine all derivatives automatically, no need for you to think about it.

Warning: You might have noticed that x and y are Parameter‘s in the above problem, which may strike you
as weird.

However, it makes perfect sense because in this problem they are parameters to be optimised, not variables. Further-
more, this way of defining it is consistent with the treatment of Variable‘s and Parameter‘s in symfit. Be
aware of this when using Minimize, as the whole process won’t work otherwise.

18 Chapter 4. Fitting Types
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4.5 ODE Fitting

Fitting to a system of ODEs is also remarkedly simple with symfit. Let’s do a simple example from reaction kinetics.
Suppose we have a reaction A + A -> B with rate constant 𝑘. We then need the following system of rate equations:

𝑑𝐴

𝑑𝑡
= −𝑘𝐴2

𝑑𝐵

𝑑𝑡
= 𝑘𝐴2

In symfit, this becomes:

model_dict = {
D(a, t): - k * a**2,
D(b, t): k * a**2,

}

We see that the symfit code is already very readable. Let’s do a fit to this:

tdata = np.array([10, 26, 44, 70, 120])
adata = 10e-4 * np.array([44, 34, 27, 20, 14])
a, b, t = variables('a, b, t')
k = Parameter(0.1)
a0 = 54 * 10e-4

model_dict = {
D(a, t): - k * a**2,
D(b, t): k * a**2,

}

ode_model = ODEModel(model_dict, initial={t: 0.0, a: a0, b: 0.0})

fit = Fit(ode_model, t=tdata, a=adata, b=None)
fit_result = fit.execute()

That’s it! An ODEModel behaves just like any other model object, so Fit knows how to deal with it! Note that since
we don’t know the concentration of B, we explicitly set b=None when calling Fit so it will be ignored.

Upon every iteration of performing the fit the ODEModel is integrated again from the initial point using the new
guesses for the parameters.

We can plot it just like always:

# Generate some data
tvec = np.linspace(0, 500, 1000)

A, B = ode_model(t=tvec, **fit_result.params)
plt.plot(tvec, A, label='[A]')
plt.plot(tvec, B, label='[B]')
plt.scatter(tdata, adata)
plt.legend()
plt.show()

As an example of the power of symfit‘s ODE syntax, let’s have a look at a system with 2 equilibria: compound AA
+ B <-> AAB and AAB + B <-> d.

In symfit these can be implemented as:

AA, B, AAB, BAAB, t = variables('AA, B, AAB, BAAB, t')
k, p, l, m = parameters('k, p, l, m')

4.5. ODE Fitting 19
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AA_0 = 10 # Some made up initial amound of [AA]
B = AA_0 - BAAB + AA # [B] is not independent.

model_dict = {
D(BAAB, t): l * AAB * B - m * BAAB,
D(AAB, t): k * A * B - p * AAB - l * AAB * B + m * BAAB,
D(A, t): - k * A * B + p * AAB,

}

The result is as readable as one can reasonably expect from a multicomponent system (and while using chemical
notation). Let’s plot the model for some kinetics constants:

model = ODEModel(model_dict, initial={t: 0.0, AA: AA_0, AAB: 0.0, BAAB: 0.0})

# Generate some data
tdata = np.linspace(0, 3, 1000)
# Eval the normal way.
AA, AAB, BAAB = model(t=tdata, k=0.1, l=0.2, m=0.3, p=0.3)

plt.plot(tdata, AA, color='red', label='[AA]')
plt.plot(tdata, AAB, color='blue', label='[AAB]')
plt.plot(tdata, BAAB, color='green', label='[BAAB]')
plt.plot(tdata, B(BAAB=BAAB, AA=AA), color='pink', label='[B]')
# plt.plot(tdata, AA + AAB + BAAB, color='black', label='total')
plt.legend()
plt.show()

20 Chapter 4. Fitting Types
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4.6 Global FItting

In a global fitting problem, we fit to multiple datasets where one or more parameters might be shared. The same syntax
used for ODE fitting makes this problem very easy to solve in symfit.

As a simple example, suppose we have two datasets measuring exponential decay, with the same background, but
different amplitude and decay rate.

𝑓(𝑥) = 𝑦0 + 𝑎 * 𝑒−𝑏*𝑥

In order to fit to this, we define the following model:

x_1, x_2, y_1, y_2 = variables('x_1, x_2, y_1, y_2')
y0, a_1, a_2, b_1, b_2 = parameters('y0, a_1, a_2, b_1, b_2')

model = Model({
y_1: y0 + a_1 * exp(- b_1 * x_1),
y_2: y0 + a_2 * exp(- b_2 * x_2),

})

Note that y0 is shared between the components. Fitting is then done in the normal way:

fit = Fit(model, x_1=xdata1, x_2=xdata2, y_1=ydata1, y_2=ydata2)
fit_result = fit.execute()

Warning: The regression coeeficient is not properly defined for vector-valued models, but it is still listed! Until
this is fixed, please recalculate it on your own for every component using the bestfit parameters. Do not cite the
overall 𝑅2 given by symfit.

4.6. Global FItting 21
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4.6.1 Advanced usage

In general, the separate components of the model can be whatever you need them to be. You can mix and match which
variables and parameters should be coupled and decoupled ad lib. Some examples are given below.

Same parameters and same function, different (in)dependent variables:

datasets = [data_1, data_2, data_3, data_4, data_5, data_6]

xs = variables('x_1, x_2, x_3, x_4, x_5, x_6')
ys = variables('y_1, y_2, y_3, y_4, y_5, y_6')
zs = variables(', '.join('z_{}'.format(i) for i in range(6)))
a, b = parameters('a, b')

model_dict = {
z: a/(y * b) * exp(- a * x)

for x, y, z in zip(xs, ys, zs)
}

4.7 How Does Fit Work?

How does Fit get from a (named) model and some data to a fit? Consider the following example:

22 Chapter 4. Fitting Types
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from symfit import parameters, variables, Fit

a, b = parameters('a, b')
x, y = variables('x, y')
model = {y: a * x + b}

fit = Fit(model, x=x_data, y=y_data, sigma_y=sigma_data)
fit_result = fit.execute()

The first thing symfit does is build 𝜒2 for your model:

chi_squared = sum((y - f)**2/sigmas[y]**2 for y, f in model.items())

In this line sigmas is a dict which contains all vars that where given a value, or returns 1 otherwise.

This 𝜒2 is then transformed into a python function which can then be used to do the numerical calculations:

vars, params = seperate_symbols(chi_squared)
py_chi_squared = lambdify(vars + params, chi_squared)

We are now almost there. Just two steps left. The first is to wrap all the data into the py_chi_squared function
using partial into the function to be optimized:

from functools import partial

error = partial(py_chi_squared, **data_per_var)

where data_per_var is a dict containing variable names: value pairs.

Now all that is left is to call leastsqbound and have it find the best fit parameters:

best_fit_parameters, covariance_matrix = leastsqbound(
error,
self.guesses,
self.eval_jacobian,
self.bounds,

)

That’s it! Finally there are some steps to generate a FitResult object, but these are not important for our current
discussion.

4.8 What if the model is unnamed?

Then you’ll have to use the ordering. Variables throughout symfit‘s objects are internally ordered in the following
way: first independent variables, then dependent variables, then sigma variables, and lastly parameters when applica-
ble. Within each group alphabetical ordering applies.

It is therefore always possible to assign data to variables in an unambiguis way using this ordering. In the above
example:

fit = Fit(model, x_data, y_data, sigma_data)
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CHAPTER 5

Style Guide & Best Practices

5.1 Style Guide

Anything Raymond Hettinger says wins the argument until I have time to write a proper style guide.

5.2 Best Practices

• It is recommended to always use named models. So not:

model = a * x**2
fit = Fit(model, xdata, ydata)

but:

model = {y: a * x**2}
fit = Fit(model, x=xdata, y=ydata)

In this simple example the two are equivalent but for multidimentional data using ordered arguments can become
ambiguous and it even appears there is a difference in interpretation between py2 and py3. To prevent such
ambiguity and to make sure your code is transportable, always use named models. And the result is more
readable anyway right?

• When evaluating models use tuple-unpacking:

model = {y_1: x**2, y_2: x**3}
sol_1, sol_2 = model(x=xdata)

and not:

sol_1 = model(x=xdata)[0]

or something similar.
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CHAPTER 6

Technical Notes

Essays on mathematical and implementation details.

6.1 On Likelihood Fitting

The Likelihood object is a subclass of Maximize. The error_func and eval_jacobian definitions have been changed to
facilitate what one would expect from Likelihood fitting:

error_func gives the value of log-likelihood at the given values of 𝑝 and �⃗�𝑖, where 𝑝 is a shorthand notation for all
parameter, and �⃗�𝑖 the same shorthand for all independent variables.

log𝐿(𝑝|�⃗�𝑖) =

𝑁∑︁
𝑖=1

log 𝑓(𝑝|�⃗�𝑖)

eval_jacobian gives the derivative with respect to every parameter of the log-likelihood:

∇𝑝 log𝐿(𝑝|�⃗�𝑖) =

𝑁∑︁
𝑖=1

1

𝑓(𝑝|�⃗�𝑖)
∇𝑝𝑓(𝑝|�⃗�𝑖)

Where ∇𝑝 is the derivative with respect to all parameters 𝑝. The function therefore returns a vector of length len(p)
containing the Jacobian evaluated at the given values of 𝑝 and �⃗�.

6.2 On Standard Deviations

This essay is meant as a reflection on the implementation of Standard Deviations and/or measurement errors in
symfit. Although reading this essay in it’s entirely will only be interesting to a select few, I urge anyone who uses
symfit to read the following summarizing bullet points, as symfit is NOT backward-compatible with scipy.

• standard deviations are assumed to be measurement errors by default, not relative weights. This is the opposite
of the scipy definition. Set absolute_sigma=False when calling Fit to get the scipy behavior.

6.2.1 Analytical Example

The implementation of standard deviations should be in agreement with cases to which the analytical solution is
known. symfit was build such that this is true. Let’s follow the example outlined by [taldcroft]. We’ll be sampling
from a normal distribution with 𝜇 = 0.0 and varying 𝜎. It can be shown that given a sample from such a distribution:

𝜇 = 0.0
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𝜎𝜇 =
𝜎√
𝑁

where N is the size of the sample. We see that the error in the sample mean scales with the 𝜎 of the distribution.

In order to reproduce this with symfit, we recognize that determining the avarage of a set of numbers is the same
as fitting to a constant. Therefore we will fit to samples generated from distributions with 𝜎 = 1.0 and 𝜎 = 10.0 and
check if this matches the analytical values. Let’s set 𝑁 = 10000.

N = 10000
sigma = 10.0
np.random.seed(10)
yn = np.random.normal(size=N, scale=sigma)

a = Parameter('a')
y = Variable('y')
model = {y: a}

fit = Fit(model, y=yn, sigma_y=sigma)
fit_result = fit.execute()

fit_no_sigma = Fit(model, y=yn)
fit_result_no_sigma = fit_no_sigma.execute()

This gives the following results:

• a = 5.102056e-02 +- 1.000000e-01 when sigma_y is provided. This matches the analytical prediction.

• a = 5.102056e-02 +- 9.897135e-02 without sigma_y provided. This is incorrect.

If we run the above code example with sigma = 1.0, we get the following results:

• a = 5.102056e-03 +- 9.897135e-03 when sigma_y is provided. This matches the analytical prediction.

• a = 5.102056e-03 +- 9.897135e-03 without sigma_y provided. This is also correct, since providing no weights
is the same as setting the weights to 1.

To conclude, if symfit is provided with the standard deviations, it will give the expected result by default. As
shown in [taldcroft] and symfit‘s tests.py, scipy.optimize.curve_fit has to be provided with the
absolute_sigma=True setting to do the same.

Important: We see that even if the weight provided to every data point is the same, the scale of the weight still
effects the result. scipy was build such that the opposite is true: if all datapoints have the same weight, the error in
the parameters does not depend on the scale of the weight.

This difference is due to the fact that symfit is build for area’s of science where one is dealing with measurement
errors. And with measurement errors, the size of the errors obviously matters for the certainty of the fit parameters,
even if the errors are the same for every measurement.

If you want the scipy behavior, initiate Fit with absolute_sigma=False.

6.3 Comparison to Mathematica

In Mathematica, the default setting is also to use relative weights, which we just argued is not correct when dealing
with measurement errors. In [mathematica] this problem is discussed very nicely, and it is shown how to solve this in
Mathematica.

Since symfit is a fitting tool for the practical man, measurement errors are assumed by default.
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CHAPTER 7

Dependencies and Credits

Always pay credit where credit’s due. symfit uses the following projects to make it’s sexy interface possible:

• leastsqbound-scipy is used to bound parameters to a given domain.

• seaborn was used to make the beautifully styled plots in the example code. All you have to do to sexify your
matplotlib plot’s is import seaborn, even if you don’t use it’s special plotting facilities, so I highly recommend
it.

• numpy and scipy are of course used to do efficient data processing.

• sympy is used for the manipulation of the symbolic expressions that give this project it’s high readability.
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CHAPTER 8

Module Documentation

This page contains documentation to everything symfit has to offer.

8.1 Fit

class symfit.core.fit.BaseFit(model, *ordered_data, **named_data)
Bases: symfit.core.fit.TakesData

Abstract base class for all fitting objects.

error_func(*args, **kwargs)
Every fit object has to define an error_func method, giving the function to be minimized.

eval_jacobian(*args, **kwargs)
Every fit object has to define an eval_jacobian method, giving the jacobian of the function to be minimized.

execute(*args, **kwargs)
Every fit object has to define an execute method. Any * and ** arguments will be passed to the fitting
module that is being wrapped, e.g. leastsq.

Args kwargs

Returns Instance of FitResults

class symfit.core.fit.BaseModel(model)
Bases: collections.abc.Mapping

ABC for Model‘s. Makes sure models are iterable. Models can be initiated from Mappings or Iterables of
Expressions, or from an expression directly. Expressions are not enforced for ducktyping purposes.

__eq__(other)
Model‘s are considered equal when they have the same dependent variables, and the same expres-
sions for those dependent variables. The same is defined here as passing sympy == for the vars
themselves, and as expr1 - expr2 == 0 for the expressions. For more info check the ‘sympy
docs<https://github.com/sympy/sympy/wiki/Faq>‘_.

Parameters other – Instance of Model.

Returns bool

__getitem__(dependent_var)
Returns the expression belonging to a given dependent variable.

Parameters dependent_var (Variable) – Instance of Variable

Returns The expression belonging to dependent_var
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__init__(model)
Initiate a Model from a dict:

a = Model({y: x**2})

Preferred way of initiating Model, since now you know what the dependent variable is called.

Parameters model – dict of Expr, where dependent variables are the keys.

__iter__()

Returns iterable over self.model_dict

__len__()

Returns the number of dependent variables for this model.

bounds

Returns List of tuples of all bounds on parameters.

shared_parameters

Returns bool, indicating if parameters are shared between the vector components of this model.

vars

Returns Returns a list of dependent, independent and sigma variables, in that order.

class symfit.core.fit.CallableModel(model)
Bases: symfit.core.fit.BaseModel

Defines a callable model. The usual rules apply to the ordering of the arguments:

•first independent variables, then dependent variables, then parameters.

•within each of these groups they are ordered alphabetically.

__call__(*args, **kwargs)
Evaluate the model for a certain value of the independent vars and parameters. Signature for this function
contains independent vars and parameters, NOT dependent and sigma vars.

Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
Alphabetical order within each group.

Parameters

• args –

• kwargs –

Returns A namedtuple of all the dependent vars evaluated at the desired point. Will always
return a tuple, even for scalar valued functions. This is done for consistency.

eval_components(*args, **kwargs)
Evaluate the components of the model with the given data. Used for numerical evaluation.

class symfit.core.fit.ConstrainedNumericalLeastSquares(model, *args, **kwargs)
Bases: symfit.core.fit.Minimize, symfit.core.fit.HasCovarianceMatrix

This object performs 𝜒2 minimization, subject to constraints. As an example, we could imagine fitting the
angles of a triangle:

a, b, c = parameters('a, b, c')
a_i, b_i, c_i = variables('a_i, b_i, c_i')

model = {a_i: a, b_i: b, c_i: c}
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data = np.array([
[10.1, 9., 10.5, 11.2, 9.5, 9.6, 10.],
[102.1, 101., 100.4, 100.8, 99.2, 100., 100.8],
[71.6, 73.2, 69.5, 70.2, 70.8, 70.6, 70.1],

])

fit = ConstrainedNumericalLeastSquares(
model=model,
a_i=data[0],
b_i=data[1],
c_i=data[2],
constraints=[Equality(a + b + c, 180)]

)
fit_result = fit.execute()

Unlike NumericalLeastSquares, it also supports vector components of unequal length and is therefore preferred
for Global Fitting problems.

In order to perform minimization, this object is a subclass of Minimize, and the output might therefore deviate
slightly from the MINPACK result given by the more traditional NumericalLeastSquares object.

error_func(p, independent_data, dependent_data, sigma_data, flatten_components=True)
Returns 𝜒2, summing over all the vector components and data indices.

This function now supports setting variables to None. Needs mathematical rigor!

Parameters

• p – array of floats for the parameters.

• data – data to be provided to Variable‘s.

• flatten_components – If True, 𝜒2 is returned. If False, the 𝜒2 per vector com-
ponent is returned.

eval_jacobian(p, independent_data, dependent_data, sigma_data)
Evaluates the jacobian of 𝜒2, summing over all the vector components and data indices.

Returns array of len(self.model.params) containing the components of the Jacobian.

execute(*args, **kwargs)
This wraps the execute of ‘Minimize’ with the calculation of the covariance matrix. Read Minimize.execute
for a more general description.

class symfit.core.fit.Constraint(constraint, model)
Bases: symfit.core.fit.Model

Constraints are a special type of model in that they have a type: >=, == etc. They are made to have lhs - rhs ==
0 of the original expression.

For example, Eq(y + x, 4) -> Eq(y + x - 4, 0)

Since a constraint belongs to a certain model, it has to be initiated with knowledge of it’s parent model. This is
important because all numerical_ methods are done w.r.t. the parameters and variables of the parent model,
not the constraint! This is because the constraint might not have all the parameter or variables that the model
has, but in order to compute for example the Jacobian we still want to derive w.r.t. all the parameters, not just
those present in the constraint.

__init__(constraint, model)

Parameters

• constraint – constraint that model should be subjected to.
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• model – A constraint is always tied to a model.

constraint_type
alias of Equality

jacobian

Returns Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.
Partial derivatives are of the components of the function with respect to the Parameter’s, not
the independent Variable’s.

numerical_components

Returns lambda functions of each of the components in model_dict, to be used in numerical
calculation.

numerical_jacobian

Returns lambda functions of the jacobian matrix of the function, which can be used in numerical
optimization.

class symfit.core.fit.Fit(*args, **kwargs)
Bases: object

Your one stop fitting solution! Based on the nature of the input, this object will attempt to select the right fitting
type for your problem.

If you need very specific control over how the problem is solved, please use one of the available fitting objects
directly.

Currently Fit will select between NumericalLeastSquares and ConstrainedNumericalLeastSquares.

execute(*options, **kwoptions)
Execute Fit, giving any options and kwoptions to the fitting object.

model
Property which returns self.fit.model

class symfit.core.fit.FitResults(params, popt, pcov, infodic, mesg, ier, ydata=None,
sigma=None)

Bases: object

Class to display the results of a fit in a nice and unambiguous way. All things related to the fit are available on
this class, e.g. - parameters + stdev - R squared (Regression coefficient.) - fitting status message

This object is made to behave entirely read-only. This is a bit unnatural to enforce in Python but I feel it is
necessary to guarantee the integrity of the results.

__init__(params, popt, pcov, infodic, mesg, ier, ydata=None, sigma=None)
Excuse the ugly names of most of these variables, they are inherited from scipy. Will be changed.

Parameters

• params – list of Parameter‘s.

• popt – best fit parameters, same ordering as in params.

• pcov – covariance matrix.

• infodic – dict with fitting info.

• mesg – Status message.

• ier – Number of iterations.

• ydata –
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__str__()
Pretty print the results as a table.

covariance(param_1, param_2)
Return the covariance between param_1 and param_2.

Parameters

• param_1 – Parameter Instance.

• param_2 – Parameter Instance.

Returns Covariance of the two params.

infodict
Read-only Property.

iterations
Read-only Property.

params
Read-only Property.

r_squared
r_squared Property.

Returns Regression coefficient.

status_message
Read-only Property.

stdev(param)
Return the standard deviation in a given parameter as found by the fit.

Parameters param – Parameter Instance.

Returns Standard deviation of param.

value(param)
Return the value in a given parameter as found by the fit.

Parameters param – Parameter Instance.

Returns Value of param.

variance(param)
Return the variance in a given parameter as found by the fit.

Parameters param – Parameter Instance.

Returns Variance of param.

class symfit.core.fit.HasCovarianceMatrix
Bases: object

Mixin class for calculating the covariance matrix for any model that has a well-defined Jacobian 𝐽 . The covari-
ance is then approximated as 𝐽𝑇𝑊𝐽 , where W contains the weights of each data point.

Supports vector valued models, but is unable to estimate covariances for those, just variances. Therefore, take
the result with a grain of salt for vector models.

covariance_matrix(best_fit_params)
Given best fit parameters, this function finds the covariance matrix. This matrix gives the (co)variance in
the parameters.

Parameters best_fit_params – dict of best fit parameters as given by .best_fit_params()

8.1. Fit 35



symfit Documentation, Release 0.3.0

Returns covariance matrix.

class symfit.core.fit.Likelihood(model, *args, **kwargs)
Bases: symfit.core.fit.Maximize

Fit using a Maximum-Likelihood approach. This object maximizes the log-likelihood function.

error_func(p, independent_data, dependent_data, sigma_data)
Error function to be maximised(!) in the case of log-likelihood fitting.

Parameters

• p – guess params

• data – xdata

Returns scalar value of log-likelihood

eval_jacobian(p, independent_data, dependent_data, sigma_data)
Jacobian for log-likelihood is defined as ∇𝑝(log(𝐿(𝑝|�⃗�))).

Parameters

• p – guess params

• data – data for the variables.

Returns array of length number of Parameter‘s in the model, with all partial derivatives
evaluated at p, data.

class symfit.core.fit.LinearLeastSquares(*args, **kwargs)
Bases: symfit.core.fit.BaseFit

Experimental. Solves the linear least squares problem analytically. Involves no iterations or approximations,
and therefore gives the best possible fit to the data.

The Model provided has to be linear.

Currently, since this object still has to mature, it suffers from the following limitations:

•It does not check if the model can be linearized by a simple substitution. For example, exp(a * x) -> b *
exp(x). You will have to do this manually.

•Does not use bounds or guesses on the Parameter‘s. Then again, it doesn’t have to, since you have an
exact solution. No guesses required.

•It only works with scalar functions. This is strictly enforced.

__init__(*args, **kwargs)

Raises ModelError in case of a non-linear model or when a vector valued function is pro-
vided.

best_fit_params()
Fits to the data and returns the best fit parameters.

Returns dict containing parameters and their best-fit values.

covariance_matrix(best_fit_params)
Given best fit parameters, this function finds the covariance matrix. This matrix gives the (co)variance in
the parameters.

Parameters best_fit_params – dict of best fit parameters as given by .best_fit_params()

Returns covariance matrix.
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execute()
Execute an analytical (Linear) Least Squares Fit. This object works by symbolically solving when ∇𝜒2 =
0.

To perform this task the expression of ∇𝜒2 is determined, ignoring that 𝜒2 involves summing over all
terms. Then the sum is performed by substituting the variables by their respective data and summing all
terms, while leaving the parameters symbolic.

The resulting system of equations is then easily solved with sympy.solve.

Returns FitResult

static is_linear(model)
Test whether model is of linear form in it’s parameters.

Currently this function does not recognize if a model can be considered linear by a simple substitution,
such as exp(k x) = k’ exp(x).

Parameters model – Model instance

Returns True or False

class symfit.core.fit.Maximize(model, *args, **kwargs)
Bases: symfit.core.fit.Minimize

Maximize a model subject to constraints. Simply flips the sign on error_func and eval_jacobian in order to
maximize.

class symfit.core.fit.Minimize(model, *args, **kwargs)
Bases: symfit.core.fit.BaseFit

Minimize a model subject to constraints. A wrapper for scipy.optimize.minimize.

Minimize itself doesn’t work when data is provided to its Variables, use one of its subclasses for that.

__init__(model, *args, **kwargs)
Because in a lot of use cases for Minimize no data is supplied to variables, all the empty variables are
replaced by an empty np array.

Constraints constraints the minimization is subject to.

error_func(p, independent_data, dependent_data, sigma_data)
The function to be optimized. Scalar valued models are assumed. For Minimize the thing to minimize is
simply self.model directly.

Parameters

• p – array of floats for the parameters.

• data – data to be provided to Variable‘s.

eval_jacobian(p, independent_data, dependent_data, sigma_data)
Takes partial derivatives of model w.r.t. each Parameter.

Parameters

• p – array of floats for the parameters.

• data – data to be provided to Variable‘s.

Returns array of length number of Parameter‘s in the model, with all partial derivatives
evaluated at p, data.

scipy_constraints
Read-only Property of all constraints in a scipy compatible format.
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Returns dict of scipy compatible statements.

class symfit.core.fit.Model(model)
Bases: symfit.core.fit.CallableModel

Model represents a symbolic function and all it’s derived properties such as sum of squares, jacobian etc. Models
can be initiated from several objects:

a = Model({y: x**2})
b = Model(y=x**2)

Models are callable. The usual rules apply to the ordering of the arguments:

•first independent variables, then dependent variables, then parameters.

•within each of these groups they are ordered alphabetically.

Models are also iterable, behaving as their internal model_dict. In the example above, a[y] returns x**2, len(a)
== 1, y in a == True, etc.

__str__()
Printable representation of this model.

Returns str

chi

Returns Symbolic Square root of 𝜒2. Required for MINPACK optimization only. Denoted as√︀
(𝜒2)

chi_jacobian
Return a symbolic jacobian of the

√︀
(𝜒2) function. Vector of derivatives w.r.t. each parameter. Not a

Matrix but a vector! This is because that’s what leastsq needs.

chi_squared

Returns Symbolic 𝜒2

chi_squared_jacobian
Return a symbolic jacobian of the 𝜒2 function. Vector of derivatives w.r.t. each parameter. Not a Matrix
but a vector!

eval_components(*args, **kwargs)

Returns lambda functions of each of the components in model_dict, to be used in numerical
calculation.

eval_jacobian(*args, **kwargs)

Returns lambda functions of the jacobian matrix of the function, which can be used in numerical
optimization.

jacobian

Returns Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.

Partial derivatives are of the components of the function with respect to the Parameter’s, not the indepen-
dent Variable’s.

numerical_chi

Returns lambda function of the .chi method, to be used in MINPACK optimisation.

numerical_chi_jacobian

Returns lambda functions of the jacobian of the .chi method, which can be used in numerical
optimization.
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numerical_chi_squared

Returns lambda function of the .chi_squaredmethod, to be used in numerical optimisation.

numerical_chi_squared_jacobian

Returns lambda functions of the jacobian of the .chi_squared method.

numerical_components

Returns lambda functions of each of the components in model_dict, to be used in numerical
calculation.

numerical_jacobian

Returns lambda functions of the jacobian matrix of the function, which can be used in numerical
optimization.

exception symfit.core.fit.ModelError
Bases: Exception

Raised when a problem occurs with a model.

class symfit.core.fit.NonLinearLeastSquares(*args, **kwargs)
Bases: symfit.core.fit.BaseFit

Experimental. Implements non-linear least squares. Works by a two step process: First the model is linearised
by doing a first order taylor expansion around the guesses for the parameters. Then a LinearLeastSquares fit is
performed. This is iterated until a fit of sufficient quality is obtained.

Sensitive to good initial guesses. Providing good initial guesses is a must.

execute(relative_error=1e-08, max_iter=500)
Perform a non-linear least squares fit.

Parameters

• relative_error – Relative error between the sum of squares of subsequent itterations.
Once smaller than the value specified, the fit is considered complete.

• max_iter – Maximum number of iterations before giving up.

Returns Instance of FitResults.

class symfit.core.fit.NumericalLeastSquares(model, *ordered_data, **named_data)
Bases: symfit.core.fit.BaseFit

Solves least squares numerically using leastsqbounds. Gives results consistent with MINPACK except when
borders are provided.

error_func(p, independent_data, dependent_data, sigma_data, flatten=True)
Returns the value of the square root of 𝜒2, summing over the components.

This function now supports setting variables to None. Needs mathematical rigor!

Parameters

• p – array of parameter values.

• independent_data – Data to provide to the independent variables.

• dependent_data –

• sigma_data –

• flatten – If True, summing is performed over the data indices (default).

Returns
√︀
(𝜒2)
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execute(*options, **kwoptions)

Parameters

• options – Any postional arguments to be passed to leastsqbound

• kwoptions – Any named arguments to be passed to leastsqbound

class symfit.core.fit.ODEModel(model_dict, initial, *lsoda_args, **lsoda_kwargs)
Bases: symfit.core.fit.CallableModel

Model build from a system of ODEs. When the model is called, the ODE is integrated using the LSODA
package.

Currently the initial conditions are assumed to specify the first point to begin the integration from. This is
enforced. In future versions one should be allowed to specify the initial value as a parameter.

__call__(*args, **kwargs)
Evaluate the model for a certain value of the independent vars and parameters. Signature for this function
contains independent vars and parameters, NOT dependent and sigma vars.

Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
Alphabetical order within each group.

Parameters

• args –

• kwargs –

Returns A namedtuple of all the dependent vars evaluated at the desired point. Will always
return a tuple, even for scalar valued functions. This is done for consistency.

__getitem__(dependent_var)
Gives the function defined for the derivative of dependent_var. e.g. 𝑦′ = 𝑓(𝑦, 𝑡), model[y] -> f(y, t)

Parameters dependent_var –

Returns

__init__(model_dict, initial, *lsoda_args, **lsoda_kwargs)

Parameters

• model_dict – Dictionary specifying ODEs. e.g. model_dict = {D(y, x): a * x**2}

• initial – dict of initial conditions for the ODE. Must be provided! e.g. initial = {y:
1.0, x: 0.0}

• lsoda_args – args to pass to the lsoda solver. See scipy’s odeint for more info.

• lsoda_kwargs – kwargs to pass to the lsoda solver.

__iter__()

Returns iterable over self.model_dict

class symfit.core.fit.ParameterDict(params, popt, pcov, *args, **kwargs)
Bases: object

Container for all the parameters and their (co)variances. Behaves mostly like an OrderedDict: can be **-ed,
allowing the sexy syntax where a model is called with values for the Variables and **params. However, under
iteration it behaves like a list! In other words, it preserves order in the params.

__getattr__(name)
A user can access the value of a parameter directly through this object.
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Parameters name – Name of a Parameter. Naming convention: let a = Parameter(). Then:
.a gives the value of the parameter. .a_stdev gives the standard deviation.

__getitem__(param_name)
This method allows this object to be addressed as a dict. This allows for the ** unpacking. Therefore
return the value of the best fit parameter, as this is what the user expects.

Parameters param_name – Name of the Parameter whose value your interested in.

Returns the value of the best fit parameter with name ‘key’.

__iter__()
Iteration over the Parameter instances. :return: iterator

__len__()
Length gives the number of Parameter instances.

Returns len(self.__params)

covariance_matrix
Returns the covariance matrix.

get_stdev(param)
Deprecated. :param param: Parameter instance. :return: returns the standard deviation of param :raises:
DeprecationWarning

get_value(param)
Deprecated. :param param: Parameter instance. :return: returns the numerical value of param :raises:
DeprecationWarning

keys()

Returns All Parameter names.

stdev(param)

Parameters param – Parameter instance.

Returns returns the standard deviation of param

value(param)

Parameters param – Parameter instance.

Returns returns the numerical value of param

class symfit.core.fit.TakesData(model, *ordered_data, **named_data)
Bases: object

An base class for everything that takes data. Most importantly, it takes care of linking the provided data to
variables. The allowed variables are extracted from the model.

__init__(model, *ordered_data, **named_data)

Parameters

• model – (dict of) sympy expression or Model object.

• bool (absolute_sigma) – True by default. If the sigma is only used for relative
weights in your problem, you could consider setting it to False, but if your sigma are
measurement errors, keep it at True. Note that curve_fit has this set to False by default,
which is wrong in experimental science.

• ordered_data – data for dependent, independent and sigma variables. Assigned in the
following order: independent vars are assigned first, then dependent vars, then sigma’s in
dependent vars. Within each group they are assigned in alphabetical order.
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• named_data – assign dependent, independent and sigma variables data by name.

Standard deviation can be provided to any variable. They have to be prefixed with sigma_. For example,
let x be a Variable. Then sigma_x will give the stdev in x.

dependent_data
Read-only Property

Returns Data belonging to each dependent variable.

Return type OrderedDict with variable names as key, data as value.

independent_data
Read-only Property

Returns Data belonging to each independent variable.

Return type OrderedDict with variable names as key, data as value.

initial_guesses

Returns Initial guesses for every parameter.

sigma_data
Read-only Property

Returns Data belonging to each sigma variable.

Return type OrderedDict with variable names as key, data as value.

class symfit.core.fit.TaylorModel(model)
Bases: symfit.core.fit.Model

A first-order Taylor expansion of a model around given parameter values (𝑝0). Is used by NonLinearLeast-
Squares. Currently only a first order expansion is implemented.

__init__(model)
Make a first order Taylor expansion of model.

Parameters model – Instance of Model

__str__()
When printing a TaylorModel, the point around which the expansion took place is included.

For example, a Taylor expansion of {y: sin(w * x)} at w = 0 would be printed as:

@{w: 0.0} -> y(x; w) = w*x

p0
Property of the 𝑝0 around which to expand. Should be set by the names of the parameters themselves.

Example:

a = Parameter()
x, y = variables('x, y')
model = TaylorModel({y: sin(a * x)})

model.p0 = {a: 0.0}

params

params returns only the free parameters. Strictly speaking, the expression for a TaylorModel
contains both the parameters :math:‘

ec{p}‘ and :math:‘ ec{p_0}‘
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around which to expand, but params should only give :math:‘

ec{p}‘. To get a mapping to the :math:‘

ec{p_0}‘, use .params_0.

symfit.core.fit.r_squared(model, fit_result, data)
Calculates the coefficient of determination, R^2, for the fit.

(Is not defined properly for vector valued functions.)

Parameters

• model – Model instance

• fit_result – FitResults instance

• data – data with which the fit was performed.

8.2 Argument

class symfit.core.argument.Argument(name=None, **assumptions)
Bases: sympy.core.symbol.Symbol

Base class for symfit symbols. This helps make symfit symbols distinguishable from sympy symbols.

The Argument class also makes DRY possible in defining Argument‘s: it uses inspect to read the lhs of
the assignment and uses that as the name for the Argument is none is explicitly set.

For example:

x = Variable()
print(x.name)
>> 'x'

class symfit.core.argument.Parameter(value=1.0, min=None, max=None, fixed=False,
name=None, **assumptions)

Bases: symfit.core.argument.Argument

Parameter objects are used to facilitate bounds on function parameters.

__call__(*values, **named_values)
Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the first call so they don’t
have to be recalculated for every call. However, nothing can be stored on self as sympy uses __slots__ for
efficiency. This means there is no instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack
into the __slots__ of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible on the Expr before
calling it anyway, which makes calculating the signature absolutely useless. However, I hope that someday
some monkey patching expert in shining armour comes by and finds a way to store it in __signature__ upon
__init__ of any symfit expr such that calling inspect_sig.signature on a symbolic expression will tell you
which arguments to provide.

Parameters

• self – Any subclass of sympy.Expr

• values – Values for the Parameters and Variables of the Expr.
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• named_values – Values for the vars and params by name. named_values is allowed
to contain too many values, as this sometimes happens when using **fit_result.params on
a submodel. The irrelevant params are simply ignored.

Returns The function evaluated at values. The type depends entirely on the input. Typically
an array or a float but nothing is enforced.

__init__(value=1.0, min=None, max=None, fixed=False, name=None, **assumptions)

Parameters

• value – Initial guess value.

• min – Lower bound on the parameter value.

• max – Upper bound on the parameter value.

• fixed (bool) – Fix the parameter to value during fitting.

• name – Name of the Parameter.

• assumptions – assumptions to pass to sympy.

class symfit.core.argument.Variable(name=None, **assumptions)
Bases: symfit.core.argument.Argument

Variable type.

8.3 Operators

Monkey Patching module.

This module makes sympy Expressions callable, which makes the whole project feel more consistent.

symfit.core.operators.call(self, *values, **named_values)
Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the first call so they don’t have
to be recalculated for every call. However, nothing can be stored on self as sympy uses __slots__ for efficiency.
This means there is no instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack into the __slots__
of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible on the Expr before
calling it anyway, which makes calculating the signature absolutely useless. However, I hope that someday
some monkey patching expert in shining armour comes by and finds a way to store it in __signature__ upon
__init__ of any symfit expr such that calling inspect_sig.signature on a symbolic expression will tell you
which arguments to provide.

Parameters

• self – Any subclass of sympy.Expr

• values – Values for the Parameters and Variables of the Expr.

• named_values – Values for the vars and params by name. named_values is allowed
to contain too many values, as this sometimes happens when using **fit_result.params on a
submodel. The irrelevant params are simply ignored.

Returns The function evaluated at values. The type depends entirely on the input. Typically an
array or a float but nothing is enforced.
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8.4 Support

This module contains support functions and convenience methods used throughout symfit. Some are used predomi-
nantly internally, others are designed for users.

class symfit.core.support.D
Bases: sympy.core.function.Derivative

Convenience wrapper for sympy.Derivative. Used most notably in defining ODEModel‘s.

class symfit.core.support.RequiredKeyword
Bases: object

Flag variable to indicate that this is a required keyword.

exception symfit.core.support.RequiredKeywordError
Bases: Exception

Error raised in case a keyword-only argument is not treated as such.

symfit.core.support.cache(func)
Decorator function that gets a method as its input and either buffers the input, or returns the buffered output.
Used in conjunction with properties to take away the standard buffering logic.

Parameters func –

Returns

class symfit.core.support.deprecated(replacement=None)
Bases: object

Decorator to raise a DeprecationWarning.

__init__(replacement=None)

Parameters replacement – The function which should now be used instead.

symfit.core.support.jacobian(expr, symbols)
Derive a symbolic expr w.r.t. each symbol in symbols. This returns a symbolic jacobian vector.

Parameters

• expr – A sympy Expr.

• symbols – The symbols w.r.t. which to derive.

symfit.core.support.key2str(target)
In symfit there are many dicts with symbol: value pairs. These can not be used immediately as **kwargs,
even though this would make a lot of sense from the context. This function wraps such dict to make them usable
as **kwargs immidiately.

Parameters target – dict to be made save

Returns dict of str(symbol): value pairs.

class symfit.core.support.keywordonly(**kwonly_arguments)
Bases: object

Decorator class which wraps a python 2 function into one with keyword-only arguments.

Example:
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@keywordonly(floor=True)
def f(x, **kwargs):

floor = kwargs.pop('floor')
return np.floor(x**2) if floor else x**2

This decorator is not much more than:

floor = kwargs.pop('floor') if 'floor' in kwargs else True

However, I prefer it’s usage because: - it’s clear from reading the function declaration there is an option to
provide this

argument. The information on possible keywords is where you’d expect it to be.

•you’re guaranteed that the pop works.

•Perhaps in the future I will make this inspect-compatible so then we come full circle.

Please note that this decorator needs a ** argument on the wrapped function in order to work.

symfit.core.support.parameters(names)
Convenience function for the creation of multiple parameters.

Parameters names – string of parameter names. Should be comma seperated. Example: a, b =
parameters(‘a, b’)

symfit.core.support.seperate_symbols(func)
Seperate the symbols in symbolic function func. Return them in alphabetical order.

Parameters func – scipy symbolic function.

Returns (vars, params), a tuple of all variables and parameters, each sorted in alphabetical order.

Raises TypeError – only symfit Variable and Parameter are allowed, not sympy Symbols.

symfit.core.support.sympy_to_py(func, vars, params)
Turn a symbolic expression into a Python lambda function, which has the names of the variables and parameters
as it’s argument names.

Parameters

• func – sympy expression

• vars – variables in this model

• params – parameters in this model

Returns lambda function to be used for numerical evaluation of the model. Ordering of the argu-
ments will be vars first, then params.

symfit.core.support.sympy_to_scipy(func, vars, params)
Convert a symbolic expression to one scipy digs. Not used by symfit any more.

Parameters

• func – sympy expression

• vars – variables

• params – parameters

Returns Scipy-style function to be used for numerical evaluation of the model.

symfit.core.support.variables(names)
Convenience function for the creation of multiple variables.
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Parameters names – string of variable names. Should be comma seperated. Example: x, y =
variables(‘x, y’)

8.5 Distributions

Some common distributions are defined in this module. That way, users can easily build more complicated expressions
without making them look hard.

I have deliberately chosen to start these function with a capital, e.g. Gaussian instead of gaussian, because this makes
the resulting expressions more readable.

symfit.distributions.Exp(x, l)
Exponential Distribution pdf. :param x: free variable. :param l: rate parameter. :return: sympy.Expr for an
Exponential Distribution pdf.

symfit.distributions.Gaussian(x, mu, sig)
Gaussian pdf. :param x: free variable. :param mu: mean of the distribution. :param sig: standard deviation of
the distribution. :return: sympy.Expr for a Gaussian pdf.
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Indices and tables

• genindex

• modindex

• search
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