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Introduction

Existing fitting modules are not very pythonic in their API and can be difficult for humans to use. This project aims to
marry the power of scipy.optimize with the readability of SymPy to create a highly readable and easy to use
fitting package which works for projects of any scale.

symfit makes it extremely easy to provide guesses for your parameters and to bound them to a certain range:

a = Parameter(1.0, min=0.0, max=5.0)





To define models to fit to:

x = Variable()
A = Parameter()
sig = Parameter(1.0, min=0.0, max=5.0)
x0 = Parameter(1.0, min=0.0)

# Gaussian distrubution
model = A * exp(-(x - x0)**2/(2 * sig**2))





And finally, to execute the fit:

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()





And to evaluate the model using the best fit parameters:

y = model(x=xdata, **fit_result.params)






[image: Gaussian Data]


As your models become more complicated, symfit really comes into it’s own. For example, vector valued functions are
both easy to define and beautiful to look at:

model = {
    y_1: x**2,
    y_2: 2*x
}





And constrained maximization has never been this easy:

x, y = parameters('x, y')

model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [
    Eq(x**3 - y, 0),    # Eq: ==
    Ge(y - 1, 0),       # Ge: >=
]

fit = Maximize(model, constraints=constraints)






Technical Reasons

On a more technical note, this symbolic approach turns out to have great technical advantages over using scipy directly.
In order to fit, the algorithm needs the Jacobian: a matrix containing the derivatives of your model in it’s parameters.
Because of the symbolic nature of symfit, this is determined for you on the fly, saving you the trouble of having to
determine the derivatives yourself. Furthermore, having this Jacobian allows good estimation of the errors in your parameters,
something scipy does not always succeed in.
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Installation

If you are using pip, you can simply run

pip install symfit





from your terminal. If you are using linux and do not use pip, you can download the source from https://github.com/tBuLi/symfit and install manually.

Are you not on linux and you do not use pip? That’s your own mess.


Dependencies

pip install sympy
pip install numpy
pip install scipy
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Tutorial


Simple Example

The example below shows how easy it is to define a model that we could fit to.

from symfit.api import Parameter, Variable

a = Parameter()
b = Parameter()
x = Variable()
model = a * x + b





Lets fit this model to some generated data.

from symfit.api import Fit
import numpy as np

xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
ydata = a_vec * xdata + b_vec # Point scattered around the line 5 * x + 105

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()






[image: Linear Model Fit Data]


Printing fit_result will give a full report on the values for every parameter, including the uncertainty, and quality of the fit.




Initial Guess

For fitting to work as desired you should always give a good initial guess for a parameter.
The Parameter object can therefore be initiated with the following keywords:


	value the initial guess value.

	min Minimal value for the parameter.

	max Maximal value for the parameter.

	fixed Fix the value of the parameter during the fitting to value.



In the example above, we might change our Parameter‘s to the following after looking at a plot of the data:

k = Parameter(value=4, min=3, max=6)

l, m = parameters('b, c')
l.value = 60
l.fixed = True








Accessing the Results

A call to Fit.execute() returns a FitResults instance.
This object holds all information about the fit.
The fitting process does not modify the Parameter objects.
In the above example, k.value will still be 4.0 and not the value we obtain after fitting. To get the value of fit parameters we can do:

>>> print(fit_result.params.a)
>>> 14.66946...
>>> print(fit_result.params.a_stdev)
>>> 0.3367571...
>>> print(fit_result.params.b)
>>> 104.6558...
>>> print(fit_result.params.b_stdev)
>>> 19.49172...
>>> print(fit_result.r_squared)
>>> 0.950890866472





For more FitResults, see the API docs.




Evaluating the Model

With these parameters, we could now evaluate the model with these parameters so we can make a plot of it.
In order to do this, we simply call the model with these values:

import matplotlib.pyplot as plt

y = model(x=xdata, a=fit_result.params.a, b=fit_result.params.b)
plt.plot(xdata, y)
plt.show()






[image: Linear Model Fit]


The model has to be called by keyword arguments to prevent any ambiguity. So the following does not work:

y = model(xdata, fit_result.params.a, fit_result.params.b)





To make life easier, there is a nice shorthand notation to immediately use a fit result:

y = model(x=xdata, **fit_result.params)





This unpacks the .params object as a dict. For more info view ParameterDict.




Named Models

More complicated models are also relatively easy to deal with by using named models.
Let’s try our luck with a bivariate normal distribution:

from symfit import parameters, variables, exp, pi, sqrt

x, y, p = variables('x, y, p')
mu_x, mu_y, sig_x, sig_y, rho = parameters('mu_x, mu_y, sig_x, sig_y, rho')

z = (x - mu_x)**2/sig_x**2 + (y - mu_y)**2/sig_y**2 - 2 * rho * (x - mu_x) * (y - mu_y)/(sig_x * sig_y)
model = {p: exp(- z / (2 * (1 - rho**2))) / (2 * pi * sig_x * sig_y * sqrt(1 - rho**2))}

fit = Fit(model, x=xdata, y=ydata, p=pdata)





By using the magic of named models, the flow of information is still very clear, even with such a complicated function.

This syntax also supports vector valued functions:

model = {y_1: a * x**2, y_2: 2 * x * b}





One thing to note about such models is that now model(x=xdata) obviously no longer works as type(model) == dict.
There is a prevered way to resolve this. If any kind of fitting object has been initiated, it will have a .model atribute
containing an instance of Model. This can again be called:

model = {y_1: a * x**2, y_2: 2 * x * b}
fit = Fit(model, x=xdata)
fit_result = fit.execute()

y_1, y_2 = fit.model(x=xdata, **fit_result.params)





This returns a tuple with the components evaluated so through the magic of tuple unpacking``y_1`` and y_2 contain the
evaluated fit. Nice!

If for some reason no Fit is initiated you can make a Model object yourself:

from symfit import Model

model_dict = {y_1: a * x**2, y_2: 2 * x * b}
model = Model.from_dict(model_dict)

y_1, y_2 = fit.model(x=xdata, a=2.4, b=0.1)








symfit exposes sympy.api

symfit exposes the sympy api as well, so mathematical expressions such as exp, sin and pi are importable
from symfit as well. For more, read the sympy docs [http://docs.sympy.org].
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Fitting Types


Fit (LeastSquares)

The default fitting object does least-squares fitting:

from symfit import parameters, variables, Fit
import numpy as np

# Define a model to fit to.
a, b = parameters('a, b')
x = variables('x')
model = a * x + b

# Generate some data
xdata = np.linspace(0, 100, 100) # From 0 to 100 in 100 steps
a_vec = np.random.normal(15.0, scale=2.0, size=(100,))
b_vec = np.random.normal(100.0, scale=2.0, size=(100,))
ydata = a_vec * xdata + b_vec # Point scattered around the line 5 * x + 105

fit = Fit(model, xdata, ydata)
fit_result = fit.execute()






[image: Linear Model Fit Data]


The Fit object also supports standard deviations. In order to provide these, it’s nicer to use a named model:

a, b = parameters('a, b')
x, y = variables('x, y')
model = {y: a * x + b}

fit = Fit(model, x=xdata, y=ydata, sigma_y=sigma)





Symfit assumes these sigma to be from measurement errors by default, and not just as a relative weight.
This means the standard deviations on parameters are calculated assuming the absolute size
of sigma is significant. This is the case for measurement errors and therefore for most use cases symfit was
designed for. If you only want to use the sigma for relative weights, then you can use absolute_sigma=False as a
keyword argument.

Please note that this is the opposite of the convention used by scipy’s curve_fit.
Looking through their mailing list this seems to have been implemented the ‘wrong’ way
for historical reasons, and was understandably never changed so as not to loose backwards compatibility.
Since this is a new project, we don’t have that problem.

Fit currently simply wraps NumericalLeastSquares, but might become more intelligent in the future.




Likelihood

Given a dataset and a model, what values should the model’s parameters have to make the observed data most likely? This is the principle of maximum likelihood and the question the Likelihood object can answer for you.

Example:

from symfit import Parameter, Variable, Likelihood, exp
import numpy as np

# Define the model for an exponential distribution (numpy style)
beta = Parameter()
x = Variable()
model = (1 / beta) * exp(-x / beta)

# Draw 100 samples from an exponential distribution with beta=5.5
data = np.random.exponential(5.5, 100)

# Do the fitting!
fit = Likelihood(model, data)
fit_result = fit.execute()





Off-course fit_result is a normal FitResults object. Because scipy.optimize.minimize is used to do the actual work, bounds on parameters, and even constraints are supported. For more information on this subject, check out symfit‘s Minimize.




Minimize/Maximize

Minimize or Maximize a model subject to bounds and/or constraints. It is a wrapper to scipy.optimize.minimize. As an
example I present an example from the scipy docs [http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html].

Suppose we want to maximize the following function:


\[f(x,y) = 2xy + 2x - x^2 - 2y^2\]

Subject to the following constraints:


\[x^3 - y = 0\]


\[\begin{split}y - 1 >= 0\end{split}\]

In SciPy code the following lines are needed:

def func(x, sign=1.0):
    """ Objective function """
    return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

def func_deriv(x, sign=1.0):
    """ Derivative of objective function """
    dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
    dfdx1 = sign*(2*x[0] - 4*x[1])
    return np.array([ dfdx0, dfdx1 ])

cons = ({'type': 'eq',
        'fun' : lambda x: np.array([x[0]**3 - x[1]]),
        'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
        {'type': 'ineq',
        'fun' : lambda x: np.array([x[1] - 1]),
        'jac' : lambda x: np.array([0.0, 1.0])})

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
               constraints=cons, method='SLSQP', options={'disp': True})





Takes a couple of read-throughs to make sense, doesn’t it? Let’s do the same problem in symfit:

from symfit import parameters, Maximize, Eq, Ge

x, y = parameters('x, y')
model = 2*x*y + 2*x - x**2 -2*y**2
constraints = [
    Eq(x**3 - y, 0),
    Ge(y - 1, 0),
]

fit = Maximize(model, constraints=constraints)
fit_result = fit.execute()





Done! symfit will determine all derivatives automatically, no need for you to think about it.


Warning

You might have noticed that x and y are Parameter‘s in the above problem, which may strike you as weird.



However, it makes perfect sense because in this problem they are parameters to be optimised, not variables.
Furthermore, this way of defining it is consistent with the treatment of Variable‘s and Parameter‘s in symfit.
Be aware of this when using Minimize, as the whole process won’t work otherwise.




How Does Fit Work?

How does Fit get from a (named) model and some data to a fit? Consider the following example:

from symfit.api import parameters, variables, Fit

a, b = parameters('a, b')
x, y = variables('x, y')
model = {y: a * x + b}

fit = Fit(model, x=x_data, y=y_data, sigma_y=sigma_data)
fit_result = fit.execute()





The first thing symfit does is build \(\chi^2\) for your model:

chi_squared = sum((y - f)**2/sigmas[y]**2 for y, f in model.items())





In this line sigmas is a dict which contains all vars that where given a value, or returns 1 otherwise.

This \(\chi^2\) is then transformed into a python function which can then be used to do the numerical calculations:

vars, params = seperate_symbols(chi_squared)
py_chi_squared = lambdify(vars + params, chi_squared)





We are now almost there. Just two steps left. The first is to wrap all the data into the py_chi_squared function using partial into the function to be optimized:

from functools import partial

error = partial(py_chi_squared, **data_per_var)





where data_per_var is a dict containing variable names: value pairs.

Now all that is left is to call leastsqbound and have it find the best fit parameters:

best_fit_parameters, covariance_matrix = leastsqbound(
  error,
  self.guesses,
  self.eval_jacobian,
  self.bounds,
)





That’s it! Finally there are some steps to generate a FitResult object, but these are not important for our current discussion.




What if the model is unnamed?

Then you’ll have to use the ordering. Variables throughout symfit‘s objects are internally ordered in the following
way: first independent variables, then dependent variables, then sigma variables, and lastly parameters when applicable.
Within each group alphabetical ordering applies.

It is therefore always possible to assign data to variables in an unambiguis way using this ordering. In the above example:

fit = Fit(model, x_data, y_data, sigma_data)
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Technical Notes

Essays on mathematical and implementation details.



	On Likelihood Fitting

	On Standard Deviations
	Analytical Example





	Comparison to Mathematica
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On Likelihood Fitting

The Likelihood object is a subclass of Maximize. The error_func and eval_jacobian definitions have been changed to facilitate what one would expect from Likelihood fitting:

error_func gives the value of log-likelihood at the given values of \(\vec{p}\) and \(\vec{x}_i\), where
\(\vec{p}\) is a shorthand notation for all parameter, and \(\vec{x}_i\) the same shorthand for all independent
variables.


\[\log{L(\vec{p}|\vec{x}_i)} = \sum_{i=1}^{N} \log{f(\vec{p}|\vec{x}_i)}\]

eval_jacobian gives the derivative with respect to every parameter of the log-likelihood:


\[\nabla_{\vec{p}} \log{L(\vec{p}|\vec{x}_i)} = \sum_{i=1}^{N} \frac{1}{f(\vec{p}|\vec{x}_i)} \nabla_{\vec{p}} f(\vec{p}|\vec{x}_i)\]

Where \(\nabla_{\vec{p}}\) is the derivative with respect to all parameters \(\vec{p}\). The function therefore returns a vector of length len(p) containing the Jacobian evaluated at the given values of \(\vec{p}\) and \(\vec{x}\).
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On Standard Deviations

This essay is meant as a reflection on the implementation of Standard Deviations and/or measurement errors in
symfit. Although reading this essay in it’s entirely will only be interesting to a select few, I urge anyone who
uses symfit to read the following summarizing bullet points, as symfit is NOT backward-compatible with
scipy.


	standard deviations are assumed to be measurement errors by default, not relative weights. This is the opposite of the
scipy definition. Set absolute_sigma=False when calling Fit to get the scipy behavior.




Analytical Example

The implementation of standard deviations should be in agreement with cases to which the analytical solution is known.
symfit was build such that this is true. Let’s follow the example outlined by [taldcroft]. We’ll be sampling from a
normal distribution with \(\mu = 0.0\) and varying \(\sigma\). It can be shown that given a sample from such a
distribution:


\[\mu = 0.0\]


\[\sigma_{\mu} = \frac{\sigma}{\sqrt{N}}\]

where N is the size of the sample. We see that the error in the sample mean scales with the \(\sigma\) of the
distribution.

In order to reproduce this with symfit, we recognize that determining the avarage of a set of numbers is the same as
fitting to a constant. Therefore we will fit to samples generated from distributions with \(\sigma = 1.0\) and
\(\sigma = 10.0\) and check if this matches the analytical values. Let’s set \(N = 10000\).

N = 10000
sigma = 10.0
np.random.seed(10)
yn = np.random.normal(size=N, scale=sigma)

a = Parameter('a')
y = Variable('y')
model = {y: a}

fit = Fit(model, y=yn, sigma_y=sigma)
fit_result = fit.execute()

fit_no_sigma = Fit(model, y=yn)
fit_result_no_sigma = fit_no_sigma.execute()





This gives the following results:


	a = 5.102056e-02 +- 1.000000e-01 when sigma_y is provided. This matches the analytical prediction.

	a = 5.102056e-02 +- 9.897135e-02 without sigma_y provided. This is incorrect.



If we run the above code example with sigma = 1.0, we get the following results:


	a = 5.102056e-03 +- 9.897135e-03 when sigma_y is provided. This matches the analytical prediction.

	a = 5.102056e-03 +- 9.897135e-03 without sigma_y provided. This is also correct, since providing no weights is the
same as setting the weights to 1.



To conclude, if symfit is provided with the standard deviations, it will give the expected result by default. As
shown in [taldcroft] and symfit‘s tests.py, scipy.optimize.curve_fit has to be provided with the
absolute_sigma=True setting to do the same.


Important

We see that even if the weight provided to every data point is the same, the scale of the weight still effects the
result. scipy was build such that the opposite is true: if all datapoints have the same weight, the error in the
parameters does not depend on the scale of the weight.

This difference is due to the fact that symfit is build for area’s of science where one is dealing with
measurement errors. And with measurement errors, the size of the errors obviously matters for the certainty of the
fit parameters, even if the errors are the same for every measurement.

If you want the scipy behavior, initiate Fit with absolute_sigma=False.








Comparison to Mathematica

In Mathematica, the default setting is also to use relative weights, which we just argued is not correct when dealing
with measurement errors. In [mathematica] this problem is discussed very nicely, and it is shown how to solve this in
Mathematica.

Since symfit is a fitting tool for the practical man, measurement errors are assumed by default.




	[taldcroft]	http://nbviewer.ipython.org/urls/gist.github.com/taldcroft/5014170/raw/31e29e235407e4913dc0ec403af7ed524372b612/curve_fit.ipynb







	[mathematica]	http://reference.wolfram.com/language/howto/FitModelsWithMeasurementErrors.html
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Dependencies and Credits

Always pay credit where credit’s due. symfit uses the following projects to make it’s sexy interface possible:


	leastsqbound-scipy [https://github.com/jjhelmus/leastsqbound-scipy] is used to bound parameters to a given domain.

	seaborn [http://stanford.edu/~mwaskom/software/seaborn/] was used to make the beautifully styled plots in the example code. All you have to do to sexify your matplotlib plot’s is import seaborn, even if you don’t use it’s special plotting facilities, so I highly recommend it.

	numpy and scipy [http://docs.scipy.org/doc/] are of course used to do efficient data processing.

	sympy [http://docs.sympy.org/latest/index.html] is used for the manipulation of the symbolic expressions that give this project it’s high readability.
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Module Documentation

This page contains documentation to everything symfit has to offer.


BaseFit


	
class symfit.core.fit.BaseFit(model, *ordered_data, **named_data)[source]

	Bases: object

Abstract Base Class for all fitting objects. Most importantly, it takes care
of linking the provided data to variables. The allowed variables are extracted
from the model.


	
__init__(model, *ordered_data, **named_data)[source]

	



	Parameters:	
	model – (dict of) sympy expression or Model object.

	bool (absolute_sigma) – True by default. If the sigma is only used
for relative weights in your problem, you could consider setting it to
False, but if your sigma are measurement errors, keep it at True.
Note that curve_fit has this set to False by default, which is wrong in
experimental science.

	ordered_data – data for dependent, independent and sigma variables. Assigned in
the following order: independent vars are assigned first, then dependent
vars, then sigma’s in dependent vars. Within each group they are assigned in
alphabetical order.

	named_data – assign dependent, independent and sigma variables data by name.









Standard deviation can be provided to any variable. They have to be prefixed
with sigma_. For example, let x be a Variable. Then sigma_x will give the
stdev in x.






	
__weakref__

	list of weak references to the object (if defined)






	
dependent_data

	Read-only Property





	Returns:	Data belonging to each dependent variable.


	Return type:	dict with variable names as key, data as value.










	
error_func(*args, **kwargs)[source]

	Every fit object has to define an error_func method, giving the function to be minimized.






	
eval_jacobian(*args, **kwargs)[source]

	Every fit object has to define an eval_jacobian method, giving the jacobian of the
function to be minimized.






	
execute(*args, **kwargs)[source]

	Every fit object has to define an execute method.
Any * and ** arguments will be passed to the fitting module that is being wrapped, e.g. leastsq.





	Args kwargs:	


	Returns:	Instance of FitResults










	
independent_data

	Read-only Property





	Returns:	Data belonging to each independent variable.


	Return type:	dict with variable names as key, data as value.










	
initial_guesses

	



	Returns:	Initial guesses for every parameter.










	
sigma_data

	Read-only Property





	Returns:	Data belonging to each sigma variable.


	Return type:	dict with variable names as key, data as value.
















Fit


	
class symfit.core.fit.BaseFit(model, *ordered_data, **named_data)[source]

	Bases: object

Abstract Base Class for all fitting objects. Most importantly, it takes care
of linking the provided data to variables. The allowed variables are extracted
from the model.


	
__init__(model, *ordered_data, **named_data)[source]

	



	Parameters:	
	model – (dict of) sympy expression or Model object.

	bool (absolute_sigma) – True by default. If the sigma is only used
for relative weights in your problem, you could consider setting it to
False, but if your sigma are measurement errors, keep it at True.
Note that curve_fit has this set to False by default, which is wrong in
experimental science.

	ordered_data – data for dependent, independent and sigma variables. Assigned in
the following order: independent vars are assigned first, then dependent
vars, then sigma’s in dependent vars. Within each group they are assigned in
alphabetical order.

	named_data – assign dependent, independent and sigma variables data by name.









Standard deviation can be provided to any variable. They have to be prefixed
with sigma_. For example, let x be a Variable. Then sigma_x will give the
stdev in x.






	
__weakref__

	list of weak references to the object (if defined)






	
dependent_data

	Read-only Property





	Returns:	Data belonging to each dependent variable.


	Return type:	dict with variable names as key, data as value.










	
error_func(*args, **kwargs)[source]

	Every fit object has to define an error_func method, giving the function to be minimized.






	
eval_jacobian(*args, **kwargs)[source]

	Every fit object has to define an eval_jacobian method, giving the jacobian of the
function to be minimized.






	
execute(*args, **kwargs)[source]

	Every fit object has to define an execute method.
Any * and ** arguments will be passed to the fitting module that is being wrapped, e.g. leastsq.





	Args kwargs:	


	Returns:	Instance of FitResults










	
independent_data

	Read-only Property





	Returns:	Data belonging to each independent variable.


	Return type:	dict with variable names as key, data as value.










	
initial_guesses

	



	Returns:	Initial guesses for every parameter.










	
sigma_data

	Read-only Property





	Returns:	Data belonging to each sigma variable.


	Return type:	dict with variable names as key, data as value.














	
class symfit.core.fit.Constraint(constraint, model)[source]

	Bases: symfit.core.fit.Model

Constraints are a special type of model in that they have a type: >=, == etc.
They are made to have lhs - rhs == 0 of the original expression.

For example, Eq(y + x, 4) -> Eq(y + x - 4, 0)

Since a constraint belongs to a certain model, it has to be initiated with knowledge of it’s parent model.
This is important because all numerical_ methods are done w.r.t. the parameters and variables of the parent
model, not the constraint! This is because the constraint might not have all the parameter or variables that the
model has, but in order to compute for example the Jacobian we still want to derive w.r.t. all the parameters,
not just those present in the constraint.


	
__init__(constraint, model)[source]

	



	Parameters:	
	constraint – constraint that model should be subjected to.

	model – A constraint is always tied to a model.






	Returns:	












	
constraint_type

	alias of Equality






	
jacobian

	



	Returns:	Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.
Partial derivatives are of the components of the function with respect to the Parameter’s,
not the independent Variable’s.










	
numerical_components

	



	Returns:	lambda functions of each of the components in model_dict, to be used in numerical calculation.










	
numerical_jacobian

	



	Returns:	lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.














	
class symfit.core.fit.Fit(model, *ordered_data, **named_data)[source]

	Bases: symfit.core.fit.NumericalLeastSquares

Wrapper for NumericalLeastSquares to give it a more appealing name.
In the future I hope to make this object more intelligent so it can
search out the best fitting object based on certain qualifiers and
return that instead.

Therefore do not assume this object to always behave as a certain
fitting type! If it matters to you to have for example NumericalLeastSquares
or NonLinearLeastSquares for your problem, use those objects directly.
What of course will not change, is the API.


	
execute(*options, **kwoptions)[source]

	Execute Fit, giving any options and kwoptions to
NumericalLeastSquares.










	
class symfit.core.fit.FitResults(params, popt, pcov, infodic, mesg, ier, ydata=None, sigma=None)[source]

	Bases: object

Class to display the results of a fit in a nice and unambiguous way.
All things related to the fit are available on this class, e.g.
- parameters + stdev
- R squared (Regression coefficient.)
- fitting status message

This object is made to behave entirely read-only. This is a bit unnatural
to enforce in Python but I feel it is necessary to guarantee the integrity
of the results.


	
__init__(params, popt, pcov, infodic, mesg, ier, ydata=None, sigma=None)[source]

	Excuse the ugly names of most of these variables, they are inherited. Should be changed.
from scipy.
:param params: list of Parameter‘s.
:param popt: best fit parameters, same ordering as in params.
:param pcov: covariance matrix.
:param infodic: dict with fitting info.
:param mesg: Status message.
:param ier: Number of iterations.
:param ydata:






	
__str__()[source]

	Pretty print the results as a table.
:return:






	
__weakref__

	list of weak references to the object (if defined)






	
covariance(param_1, param_2)[source]

	Return the covariance between param_1 and param_2.
:param param_1: Parameter Instance.
:param param_2: Parameter Instance.
:return: Covariance of the two params.






	
infodict

	Read-only Property.






	
iterations

	Read-only Property.






	
params

	Read-only Property.






	
r_squared

	r_squared Property.





	Returns:	Regression coefficient.










	
status_message

	Read-only Property.






	
stdev(param)[source]

	Return the standard deviation in a given parameter as found by the fit.
:param param: Parameter Instance.
:return: Standard deviation of param.






	
value(param)[source]

	Return the value in a given parameter as found by the fit.
:param param: Parameter Instance.
:return: Value of param.






	
variance(param)[source]

	Return the variance in a given parameter as found by the fit.
:param param: Parameter Instance.
:return: Variance of param.










	
class symfit.core.fit.Likelihood(model, *args, **kwargs)[source]

	Bases: symfit.core.fit.Maximize

Fit using a Maximum-Likelihood approach.


	
error_func(p, data)[source]

	Error function to be maximised(!) in the case of likelihood fitting.





	Parameters:	
	p – guess params

	data – xdata






	Returns:	scalar value of log-likelihood












	
eval_jacobian(p, data)[source]

	Jacobian for likelihood is defined as \(\nabla_{\vec{p}}( \log( L(\vec{p} | \vec{x})))\).





	Parameters:	
	p – guess params

	data – data for the variables.






	Returns:	array of length number of Parameter‘s in the model, with all partial derivatives evaluated at p, data.
















	
class symfit.core.fit.LinearLeastSquares(*args, **kwargs)[source]

	Bases: symfit.core.fit.BaseFit

Experimental. Solves the linear least squares problem analytically. Involves no iterations
or approximations, and therefore gives the best possible fit to the data.

The Model provided has to be linear.

Currently, since this object still has to mature, it suffers from the following limitations:
* It does not check if the model can be linearized by a simple substitution.


For example, exp(a * x) -> b * exp(x). You will have to do this manually.



	Does not use bounds or guesses on the Parameter‘s. Then again, it doesn’t have too,
since you have an exact solution. No guesses required.

	It only works with scalar functions. This is strictly enforced.




	
__init__(*args, **kwargs)[source]

	



	Raises:	ModelError in case of a non-linear model or when a vector
valued function is provided.










	
best_fit_params()[source]

	Fits to the data and returns the best fit parameters.
:return: dict containing parameters and their best-fit values.






	
covariance_matrix(best_fit_params)[source]

	Given best fit parameters, this function finds the covariance matrix.
This matrix gives the (co)variance in the parameters.





	Parameters:	best_fit_params – dict of best fit parameters as given by .best_fit_params()


	Returns:	covariance matrix.










	
execute()[source]

	
Execute an analytical (Linear) Least Squares Fit. This object works by symbolically
solving when :math:`


abla chi^2 = 0`.


To perform this task the expression of :math:`



	abla chi^2` is determined, ignoring that

	\(\chi^2\) involves summing over all terms. Then the sum is performed by substituting
the variables by their respective data and summing all terms, while leaving the parameters
symbolic.

The resulting system of equations is then easily solved with sympy.solve.
:return: FitResult










	
static is_linear(model)[source]

	Test whether model is of linear form in it’s parameters.

Currently this function does not recognize if a model can be considered linear
by a simple substitution, such as exp(k x) = k’ exp(x).





	Parameters:	model – Model instance


	Returns:	True or False














	
class symfit.core.fit.Maximize(model, *args, **kwargs)[source]

	Bases: symfit.core.fit.Minimize

Maximize a model subject to constraints.
Simply flips the sign on error_func and eval_jacobian in order to maximize.






	
class symfit.core.fit.Minimize(model, *args, **kwargs)[source]

	Bases: symfit.core.fit.BaseFit

Minimize a model subject to constraints. A wrapper for scipy.optimize.minimize.
Minimize currently doesn’t work when data is provided to Variables, and doesn’t support vector functions.


	
__init__(model, *args, **kwargs)[source]

	Because in a lot of use cases for Minimize no data is supplied to variables,
all the empty variables are replaced by an empty np array.





	Constraints:	constraints the minimization is subject to.










	
error_func(p, data)[source]

	The function to be optimized. Scalar valued models are assumed. For Minimize the thing to evaluate is simply
self.model(*(list(data) + list(p)))





	Parameters:	
	p – array of floats for the parameters.

	data – data to be provided to Variable‘s.














	
eval_jacobian(p, data)[source]

	Takes partial derivatives of model w.r.t. each Parameter.





	Parameters:	
	p – array of floats for the parameters.

	data – data to be provided to Variable‘s.






	Returns:	array of length number of Parameter‘s in the model, with all partial derivatives evaluated at p, data.












	
scipy_constraints

	Read-only Property of all constraints in a scipy compatible format.





	Returns:	dict of scipy compatible statements.














	
class symfit.core.fit.Model(*ordered_expressions, **named_expressions)[source]

	Bases: object

Model represents a symbolic function and all it’s derived properties such as sum of squares, jacobian etc.
Models can be initiated from several objects:

a = Model.from_dict({y: x**2})
b = Model(y=x**2)





Models are callable. The usual rules apply to the ordering of the arguments:


	first independent variables, then dependent variables, then parameters.

	within each of these groups they are ordered alphabetically.




	
__call__(*args, **kwargs)[source]

	Evaluate the model for a certain value of the independent vars and parameters.
Signature for this function contains independent vars and parameters, NOT dependent and sigma vars.

Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
Alphabetical order within each group.





	Parameters:	
	args – 

	kwargs – 






	Returns:	A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple,
even for scalar valued functions. This is done for consistency.












	
__eq__(other)[source]

	Model‘s are considered equal when they have the same dependent variables,
and the same expressions for those dependent variables. The same is defined here
as passing sympy == for the vars themselves, and as expr1 - expr2 == 0 for the
expressions. For more info check the `sympy docs<https://github.com/sympy/sympy/wiki/Faq>`_.
:param other: Instance of Model.
:return: bool






	
__init__(*ordered_expressions, **named_expressions)[source]

	Initiate a Model from keyword arguments:

b = Model(y=x**2)









	Parameters:	
	ordered_expressions – sympy Expr

	named_expressions – sympy Expr














	
__len__()[source]

	



	Returns:	the number of dependent variables for this model.










	
__str__()[source]

	Printable representation of this model.
:return: str






	
__weakref__

	list of weak references to the object (if defined)






	
bounds

	



	Returns:	List of tuples of all bounds on parameters.










	
chi

	



	Returns:	Symbolic Square root of \(\chi^2\). Required for MINPACK optimization only. Denoted as \(\sqrt(\chi^2)\)










	
chi_jacobian

	Return a symbolic jacobian of the \(\sqrt(\chi^2)\) function.
Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector! This is because that’s what leastsq needs.






	
chi_squared

	



	Returns:	Symbolic \(\chi^2\)










	
chi_squared_jacobian

	Return a symbolic jacobian of the \(\chi^2\) function.
Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector!






	
components

	



	Returns:	An iterator over the symbolic components of this model










	
classmethod from_dict(model_dict)[source]

	Initiate a Model from a dict:

a = Model.from_dict({y: x**2})





Preferred way of initiating Model.





	Parameters:	model_dict – dict of Expr, where dependent variables are the keys.










	
jacobian

	



	Returns:	Jacobian ‘Matrix’ filled with the symbolic expressions for all the partial derivatives.





Partial derivatives are of the components of the function with respect to the Parameter’s,
not the independent Variable’s.






	
numerical_chi

	



	Returns:	lambda function of the .chi method, to be used in MINPACK optimisation.










	
numerical_chi_jacobian

	



	Returns:	lambda functions of the jacobian of the .chi method, which can be used in numerical optimization.










	
numerical_chi_squared

	



	Returns:	lambda function of the .chi_squared method, to be used in numerical optimisation.










	
numerical_chi_squared_jacobian

	



	Returns:	lambda functions of the jacobian of the .chi_squared method.










	
numerical_components

	



	Returns:	lambda functions of each of the components in model_dict, to be used in numerical calculation.










	
numerical_jacobian

	



	Returns:	lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.










	
ss_res

	



	Returns:	Residual sum of squares. Similar to chi_squared, but without considering weights.










	
vars

	



	Returns:	Returns a list of dependent, independent and sigma variables, in that order.














	
class symfit.core.fit.NonLinearLeastSquares(*args, **kwargs)[source]

	Bases: symfit.core.fit.BaseFit

Experimental.
Implements non-linear least squares. Works by a two step process:
First the model is linearised by doing a first order taylor expansion
around the guesses for the parameters.
Then a LinearLeastSquares fit is performed. This is iterated until
a fit of sufficient quality is obtained.

Sensitive to good initial guesses. Providing good initial guesses is a must.




	[wiki]	https://en.wikipedia.org/wiki/Non-linear_least_squares





	
execute(relative_error=0.0001, max_iter=5)[source]

	Perform a non-linear least squares fit.
:param relative_error: Relative error between the sum of squares


of subsequent itterations. Once smaller than the value specified,
the fit is considered complete.






	Parameters:	max_iter – Maximum number of iterations before giving up.


	Returns:	Instance of FitResults.














	
class symfit.core.fit.NumericalLeastSquares(model, *ordered_data, **named_data)[source]

	Bases: symfit.core.fit.BaseFit

Solves least squares numerically using leastsqbounds. Gives results consistent with MINPACK except
when borders are provided.


	
execute(*options, **kwoptions)[source]

	



	Parameters:	
	options – Any postional arguments to be passed to leastsqbound

	kwoptions – Any named arguments to be passed to leastsqbound


















	
class symfit.core.fit.ParameterDict(params, popt, pcov, *args, **kwargs)[source]

	Bases: object

Container for all the parameters and their (co)variances.
Behaves mostly like an OrderedDict: can be **-ed, allowing the sexy syntax where a model is
called with values for the Variables and **params. However, under iteration
it behaves like a list! In other words, it preserves order in the params.


	
__getattr__(name)[source]

	A user can access the value of a parameter directly through this object.





	Parameters:	name – Name of a Parameter.
Naming convention:
let a = Parameter(). Then:
.a gives the value of the parameter.
.a_stdev gives the standard deviation.










	
__getitem__(param_name)[source]

	This method allows this object to be addressed as a dict. This allows for the ** unpacking.
Therefore return the value of the best fit parameter, as this is what the user expects.





	Parameters:	param_name – Name of the Parameter whose value your interested in.


	Returns:	the value of the best fit parameter with name ‘key’.










	
__iter__()[source]

	Iteration over the Parameter instances.
:return: iterator






	
__len__()[source]

	Length gives the number of Parameter instances.





	Returns:	len(self.__params)










	
__weakref__

	list of weak references to the object (if defined)






	
covariance_matrix

	Read-Only Property. Returns the covariance matrix.






	
get_stdev(param)[source]

	Deprecated.
:param param: Parameter instance.
:return: returns the standard deviation of param
:raises: DeprecationWarning






	
get_value(param)[source]

	Deprecated.
:param param: Parameter instance.
:return: returns the numerical value of param
:raises: DeprecationWarning






	
keys()[source]

	



	Returns:	All Parameter names.










	
stdev(param)[source]

	



	Parameters:	param – Parameter instance.


	Returns:	returns the standard deviation of param










	
value(param)[source]

	



	Parameters:	param – Parameter instance.


	Returns:	returns the numerical value of param














	
class symfit.core.fit.TaylorModel(model)[source]

	Bases: symfit.core.fit.Model

A first-order Taylor expansion of a model around given parameter values (\(p_0\)).
Is used by NonLinearLeastSquares. Currently only a first order expansion is implemented.


	
__str__()[source]

	When printing a TaylorModel, the point around which the expansion took place is included.

For example, a Taylor expansion of {y: sin(w * x)} at w = 0 would be printed as:

@{w: 0.0} -> y(x; w) = w*x










	
params

	params for a TaylorModel is defined differently, since the normal Model.params has
both the \(p_0\) Parameter‘s around which to expand, and the parameters to
be fitted. But when calling on the param property, you expect to get only the free
parameters, not the \(p_0\) around which to expand.










	
symfit.core.fit.r_squared(model, fit_result, data)[source]

	Calculates the coefficient of determination, R^2, for the fit.





	Parameters:	
	model – Model instance

	fit_result – FitResults instance

	data – data with which the fit was performed.
















Argument


	
class symfit.core.argument.Argument(name=None, *sympy_args, **sympy_kwargs)[source]

	Bases: sympy.core.symbol.Symbol

Base class for symfit symbols. This helps make symfit symbols distinguishable from sympy symbols.

The Argument class also makes DRY possible in defining Argument‘s: it uses inspect to read the lhs of the
assignment and uses that as the name for the Argument is none is explicitly set.

For example:

x = Variable()
print(x.name)
>> 'x'






	
__weakref__

	list of weak references to the object (if defined)










	
class symfit.core.argument.Parameter(value=1.0, min=None, max=None, fixed=False, name=None, *sympy_args, **sympy_kwargs)[source]

	Bases: symfit.core.argument.Argument

Parameter objects are used to facilitate bounds on function parameters.


	
__call__(*values, **named_values)

	Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the
first call so they don’t have to be recalculated for every call. However, nothing
can be stored on self as sympy uses __slots__ for efficiency. This means there is no
instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack into the
__slots__ of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible
on the Expr before calling it anyway, which makes calculating the signature absolutely useless.
However, I hope that someday some monkey patching expert in shining armour comes by and finds
a way to store it in __signature__ upon __init__ of any symfit expr such that calling
inspect_sig.signature on a symbolic expression will tell you which arguments to provide.





	Parameters:	
	self – Any subclass of sympy.Expr

	values – Values for the Parameters and Variables of the Expr.

	named_values – Values for the vars and params by name. named_values is
allowed to contain too many values, as this sometimes happens when using
**fit_result.params on a submodel. The irrelevant params are simply ignored.






	Returns:	The function evaluated at values. The type depends entirely on the input.
Typically an array or a float but nothing is enforced.












	
__init__(value=1.0, min=None, max=None, fixed=False, name=None, *sympy_args, **sympy_kwargs)[source]

	



	Parameters:	
	value – Initial guess value.

	min – Lower bound on the parameter value.

	max – Upper bound on the parameter value.

	fixed (bool) – Fix the parameter to value during fitting.

	name – Name of the Parameter.

	sympy_args – Args to pass to sympy.

	sympy_kwargs – Kwargs to pass to sympy.


















	
class symfit.core.argument.Variable(name=None, *sympy_args, **sympy_kwargs)[source]

	Bases: symfit.core.argument.Argument

Variable type.








Operators

Monkey Patching module.

This module makes sympy Expressions callable, which makes the whole project feel more consistent.


	
symfit.core.operators.call(self, *values, **named_values)[source]

	Call an expression to evaluate it at the given point.

Future improvements: I would like if func and signature could be buffered after the
first call so they don’t have to be recalculated for every call. However, nothing
can be stored on self as sympy uses __slots__ for efficiency. This means there is no
instance dict to put stuff in! And I’m pretty sure it’s ill advised to hack into the
__slots__ of Expr.

However, for the moment I don’t really notice a performance penalty in running tests.

p.s. In the current setup signature is not even needed since no introspection is possible
on the Expr before calling it anyway, which makes calculating the signature absolutely useless.
However, I hope that someday some monkey patching expert in shining armour comes by and finds
a way to store it in __signature__ upon __init__ of any symfit expr such that calling
inspect_sig.signature on a symbolic expression will tell you which arguments to provide.





	Parameters:	
	self – Any subclass of sympy.Expr

	values – Values for the Parameters and Variables of the Expr.

	named_values – Values for the vars and params by name. named_values is
allowed to contain too many values, as this sometimes happens when using
**fit_result.params on a submodel. The irrelevant params are simply ignored.






	Returns:	The function evaluated at values. The type depends entirely on the input.
Typically an array or a float but nothing is enforced.














Support

This module contains support functions and convenience methods used
throughout symfit. Some are used predominantly internally, others are
designed for users.


	
class symfit.core.support.RequiredKeyword[source]

	Bases: object

Flag variable to indicate that this is a required keyword.


	
__weakref__

	list of weak references to the object (if defined)










	
exception symfit.core.support.RequiredKeywordError[source]

	Bases: Exception

Error raised in case a keyword-only argument is not treated as such.


	
__weakref__

	list of weak references to the object (if defined)










	
symfit.core.support.cache(func)[source]

	Decorator function that gets a method as its input and either buffers the input,
or returns the buffered output. Used in conjunction with properties to take away
the standard buffering logic.





	Parameters:	func – 


	Returns:	










	
symfit.core.support.jacobian(expr, symbols)[source]

	Derive a symbolic expr w.r.t. each symbol in symbols. This returns a symbolic jacobian vector.





	Parameters:	
	expr – A sympy Expr.

	symbols – The symbols w.r.t. which to derive.














	
symfit.core.support.key2str(target)[source]

	In symfit there are many dicts with symbol: value pairs.
These can not be used immediately as **kwargs, even though this would make
a lot of sense from the context.
This function wraps such dict to make them usable as **kwargs immidiately.
:param target: dict to be made save
:return: dict of str(symbol): value pairs.






	
class symfit.core.support.keywordonly(**kwonly_arguments)[source]

	Bases: object

Decorator class which wraps a python 2 function into one with keyword-only arguments.

Example:

@keywordonly(floor=True)
def f(x, **kwargs):
    floor = kwargs.pop('floor')
    return np.floor(x**2) if floor else x**2





This decorator is not much better than:

floor = kwargs.pop('floor') if 'floor' in kwargs else True





However, I prefer it’s usage because: it’s clear from reading the function deceleration
there is an option to provide this argument. Plus your guaranteed that the pop works.

Please note that this decorator needs a ** argument in order to work.


	
__weakref__

	list of weak references to the object (if defined)










	
symfit.core.support.parameters(names)[source]

	Convenience function for the creation of multiple parameters.





	Parameters:	names – string of parameter names. Should be comma seperated.
Example: a, b = parameters(‘a, b’)










	
symfit.core.support.seperate_symbols(func)[source]

	Seperate the symbols in symbolic function func. Return them in alphabetical
order.





	Parameters:	func – scipy symbolic function.


	Returns:	(vars, params), a tuple of all variables and parameters, each 
sorted in alphabetical order.


	Raises TypeError:

		only symfit Variable and Parameter are allowed, not sympy
Symbols.










	
symfit.core.support.sympy_to_py(func, vars, params)[source]

	Turn a symbolic expression into a Python lambda function,
which has the names of the variables and parameters as it’s argument names.





	Parameters:	
	func – sympy expression

	vars – variables in this model

	params – parameters in this model






	Returns:	lambda function to be used for numerical evaluation of the model. Ordering of the arguments will be vars
first, then params.












	
symfit.core.support.sympy_to_scipy(func, vars, params)[source]

	Convert a symbolic expression to one scipy digs. Not used by symfit any more.





	Parameters:	
	func – sympy expression

	vars – variables

	params – parameters






	Returns:	Scipy-style function to be used for numerical evaluation of the model.












	
symfit.core.support.variables(names)[source]

	Convenience function for the creation of multiple variables.





	Parameters:	names – string of variable names. Should be comma seperated.
Example: x, y = variables(‘x, y’)












Distributions

Some common distributions are defined in this module. That way, users can easily build
more complicated expressions without making them look hard.

I have deliberately chosen to start these function with a capital, e.g.
Gaussian instead of gaussian, because this makes the resulting expressions more
readable.


	
symfit.distributions.Exp(x, l)[source]

	Exponential Distribution pdf.
:param x: free variable.
:param l: rate parameter.
:return: sympy.Expr for an Exponential Distribution pdf.






	
symfit.distributions.Gaussian(x, mu, sig)[source]

	Gaussian pdf.
:param x: free variable.
:param mu: mean of the distribution.
:param sig: standard deviation of the distribution.
:return: sympy.Expr for a Gaussian pdf.
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"""
This module contains support functions and convenience methods used
throughout symfit. Some are used predominantly internally, others are
designed for users.
"""
from functools import wraps
from collections import OrderedDict
import inspect
import sys

import numpy as np
from sympy.utilities.lambdify import lambdify
import sympy

from symfit.core.argument import Parameter, Variable

if sys.version_info >= (3,0):
    import inspect as inspect_sig
else:
    import funcsigs as inspect_sig

[docs]def seperate_symbols(func):
    """
    Seperate the symbols in symbolic function func. Return them in alphabetical
    order.

    :param func: scipy symbolic function.
    :return: (vars, params), a tuple of all variables and parameters, each 
        sorted in alphabetical order.
    :raises TypeError: only symfit Variable and Parameter are allowed, not sympy
        Symbols.
    """
    params = []
    vars = []
    from sympy.tensor import IndexedBase
    from sympy import Symbol
    for symbol in func.free_symbols:
        if isinstance(symbol, Parameter):
            params.append(symbol)
        elif isinstance(symbol, (Variable, IndexedBase, Symbol)):
            vars.append(symbol)
        else:
            raise TypeError('model contains an unknown symbol type, {}'.format(type(symbol)))
    params.sort(key=lambda symbol: symbol.name)
    vars.sort(key=lambda symbol: symbol.name)
    return vars, params


[docs]def sympy_to_py(func, vars, params):
    """
    Turn a symbolic expression into a Python lambda function,
    which has the names of the variables and parameters as it's argument names.

    :param func: sympy expression
    :param vars: variables in this model
    :param params: parameters in this model
    :return: lambda function to be used for numerical evaluation of the model. Ordering of the arguments will be vars
        first, then params.
    """
    return lambdify((vars + params), func, modules='numpy', dummify=False)


[docs]def sympy_to_scipy(func, vars, params):
    """
    Convert a symbolic expression to one scipy digs. Not used by ``symfit`` any more.

    :param func: sympy expression
    :param vars: variables
    :param params: parameters
    :return: Scipy-style function to be used for numerical evaluation of the model.
    """
    lambda_func = sympy_to_py(func, vars, params)
    def f(x, p):
        """
        Scipy style function.

        :param x: list of arrays, NxM
        :param p: tuple of parameter values.
        """
        x = np.atleast_2d(x)
        y = [x[i] for i in range(len(x))] if len(x[0]) else []
        try:
            ans = lambda_func(*(y + list(p)))
        except TypeError:
            # Possibly this is a constant function in which case it only has Parameters.
            ans = lambda_func(*list(p))# * np.ones(x_shape)
        return ans

    return f


[docs]def variables(names):
    """
    Convenience function for the creation of multiple variables.

    :param names: string of variable names. Should be comma seperated.
        Example: x, y = variables('x, y')
    """
    return [Variable(name=name.strip()) for name in names.split(',')]


[docs]def parameters(names):
    """
    Convenience function for the creation of multiple parameters.

    :param names: string of parameter names. Should be comma seperated.
        Example: a, b = parameters('a, b')
    """
    return [Parameter(name=name.strip()) for name in names.split(',')]


[docs]def cache(func):
    """
    Decorator function that gets a method as its input and either buffers the input,
    or returns the buffered output. Used in conjunction with properties to take away
    the standard buffering logic.

    :param func:
    :return:
    """
    @wraps(func)
    def new_func(self):
        try:
            return getattr(self, '_{}'.format(func.__name__))
        except AttributeError:
            setattr(self, '_{}'.format(func.__name__), func(self))
            return getattr(self, '_{}'.format(func.__name__))

    return new_func


[docs]def jacobian(expr, symbols):
    """
    Derive a symbolic expr w.r.t. each symbol in symbols. This returns a symbolic jacobian vector.

    :param expr: A sympy Expr.
    :param symbols: The symbols w.r.t. which to derive.
    """
    jac = []
    for symbol in symbols:
        # Differentiate to every param
        f = sympy.diff(expr, symbol)
        jac.append(f)
    return jac


[docs]def key2str(target):
    """
    In ``symfit`` there are many dicts with symbol: value pairs.
    These can not be used immediately as **kwargs, even though this would make
    a lot of sense from the context.
    This function wraps such dict to make them usable as **kwargs immidiately.
    :param target: dict to be made save
    :return: dict of str(symbol): value pairs.
    """
    return {str(symbol): value for symbol, value in target.items()}


[docs]class RequiredKeyword(object):
    """ Flag variable to indicate that this is a required keyword. """


[docs]class RequiredKeywordError(Exception):
    """ Error raised in case a keyword-only argument is not treated as such. """


[docs]class keywordonly(object):
    """
    Decorator class which wraps a python 2 function into one with keyword-only arguments.

    Example::

        @keywordonly(floor=True)
        def f(x, **kwargs):
            floor = kwargs.pop('floor')
            return np.floor(x**2) if floor else x**2

    This decorator is not much better than::

        floor = kwargs.pop('floor') if 'floor' in kwargs else True

    However, I prefer it's usage because: it's clear from reading the function deceleration
    there is an option to provide this argument. Plus your guaranteed that the pop works.

    Please note that this decorator needs a ** argument in order to work.
    """
    def __init__(self, **kwonly_arguments):
        self.kwonly_arguments = kwonly_arguments
        self.required_keywords = {kw: value for kw, value in kwonly_arguments.items() if value is RequiredKeyword}
        self.optional_keywords = {kw: value for kw, value in kwonly_arguments.items() if value is not RequiredKeyword}

    def __call__(self, func):
        argspec = inspect.getargspec(func)
        if not argspec.keywords:
            raise RequiredKeywordError(
                'The keywordonly decorator requires the function to '
                'accept a **kwargs argument.'
            )

        @wraps(func)
        def wrapped_func(*args, **kwargs):
            """
            :param args: args used to call the function
            :param kwargs: kwargs used to call the function
            :return: Wrapped function which behaves like it has keyword-only arguments.
            :raises: ``RequiredKeywordError`` if not all required keywords where specified.
            """
            for kw in self.required_keywords:
                if kw not in kwargs:
                    raise RequiredKeywordError(
                        'Keyword `{}` is a required keyword. '
                        'Please provide a value.'.format(kw)
                    )
            else:  # All required keywords were provided. Assign defaults.
                for kw, default in self.optional_keywords.items():
                    if kw not in kwargs:
                        kwargs[kw] = default
                else: # All defaults assigned where needed. Call func!
                    return func(*args, **kwargs)
        return wrapped_func
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"""
Monkey Patching module.

This module makes ``sympy`` Expressions callable, which makes the whole project feel more consistent.
"""
import sys

from sympy import Eq, Ne
from sympy.core.expr import Expr
import sympy
import warnings
from symfit.core.support import sympy_to_py, seperate_symbols
from symfit.core.argument import Parameter

if sys.version_info >= (3,0):
    import inspect as inspect_sig
else:
    import funcsigs as inspect_sig

# # Overwrite the behavior opun equality checking. But we want to be able to fall
# # back on default behavior.
# orig_eq = Expr.__class__.__eq__
# orig_ne = Expr.__class__.__ne__
#
# def eq(self, other):
#     """
#     Hack to get an Eq object back. Seems to work when used this way,
#     but backwards compatibility with sympy is not guaranteed.
#     """
#     if isinstance(other, float) or isinstance(other, int):
#         if abs(other) == 1:
#             # SymPy's printing check for this and might therefore produce an
#             # error for fractions. Therefore we raise a warning in this case and
#             # ask the user to use the Eq object manually.
#             warnings.warn(str(self) + " == -1 and == 1 are not available for constraints. If you used +/-1 as a constraint, please use the symfit.Eq object manually.", UserWarning)
#             return orig_eq(self.__class__, other)
#         else:
#             return Eq(self, other)
#     else:
#         return orig_eq(self.__class__, other)
#
# def ne(self, other):
#     if isinstance(other, float) or isinstance(other, int):
#         return Ne(self, other)
#     else:
#         return orig_ne(self.__class__, other)

[docs]def call(self, *values, **named_values):
    """
    Call an expression to evaluate it at the given point.

    Future improvements: I would like if func and signature could be buffered after the
    first call so they don't have to be recalculated for every call. However, nothing
    can be stored on self as sympy uses __slots__ for efficiency. This means there is no
    instance dict to put stuff in! And I'm pretty sure it's ill advised to hack into the
    __slots__ of Expr.

    However, for the moment I don't really notice a performance penalty in running tests.

    p.s. In the current setup signature is not even needed since no introspection is possible
    on the Expr before calling it anyway, which makes calculating the signature absolutely useless.
    However, I hope that someday some monkey patching expert in shining armour comes by and finds
    a way to store it in __signature__ upon __init__ of any ``symfit`` expr such that calling
    inspect_sig.signature on a symbolic expression will tell you which arguments to provide.

    :param self: Any subclass of sympy.Expr
    :param values: Values for the Parameters and Variables of the Expr.
    :param named_values: Values for the vars and params by name. ``named_values`` is
        allowed to contain too many values, as this sometimes happens when using
        **fit_result.params on a submodel. The irrelevant params are simply ignored.
    :return: The function evaluated at ``values``. The type depends entirely on the input.
        Typically an array or a float but nothing is enforced.
    """
    independent_vars, params = seperate_symbols(self)
    # Convert to a pythonic function
    func = sympy_to_py(self, independent_vars, params)

    # Handle args and kwargs according to the allowed names.
    parameters = [  # Note that these are inspect_sig.Parameter's, not symfit parameters!
        inspect_sig.Parameter(arg.name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD)
            for arg in independent_vars + params
    ]

    arg_names = [arg.name for arg in independent_vars + params]
    relevant_named_values = {
        name: value for name, value in named_values.items() if name in arg_names
    }

    signature = inspect_sig.Signature(parameters=parameters)
    bound_arguments = signature.bind(*values, **relevant_named_values)

    return func(**bound_arguments.arguments)


# # Expr.__eq__ = eq
# # Expr.__ne__ = ne

Expr.__call__ = call
Parameter.__call__ = call
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from __future__ import print_function, division

from .basic import S
from .expr import Expr
from .evalf import EvalfMixin
from .symbol import Symbol
from .sympify import _sympify
from .evaluate import global_evaluate

from sympy.logic.boolalg import Boolean

__all__ = (
    'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
    'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
    'StrictGreaterThan', 'GreaterThan',
)


# Note, see issue 4986.  Ideally, we wouldn't want to subclass both Boolean
# and Expr.

class Relational(Boolean, Expr, EvalfMixin):
    """Base class for all relation types.

    Subclasses of Relational should generally be instantiated directly, but
    Relational can be instantiated with a valid `rop` value to dispatch to
    the appropriate subclass.

    Parameters
    ==========
    rop : str or None
        Indicates what subclass to instantiate.  Valid values can be found
        in the keys of Relational.ValidRelationalOperator.

    Examples
    ========

    >>> from sympy import Rel
    >>> from sympy.abc import x, y
    >>> Rel(y, x+x**2, '==')
    y == x**2 + x

    """
    __slots__ = []

    is_Relational = True

    # ValidRelationOperator - Defined below, because the necessary classes
    #   have not yet been defined

    def __new__(cls, lhs, rhs, rop=None, **assumptions):
        # If called by a subclass, do nothing special and pass on to Expr.
        if cls is not Relational:
            return Expr.__new__(cls, lhs, rhs, **assumptions)
        # If called directly with an operator, look up the subclass
        # corresponding to that operator and delegate to it
        try:
            cls = cls.ValidRelationOperator[rop]
            return cls(lhs, rhs, **assumptions)
        except KeyError:
            raise ValueError("Invalid relational operator symbol: %r" % rop)

    @property
    def lhs(self):
        """The left-hand side of the relation."""
        return self._args[0]

    @property
    def rhs(self):
        """The right-hand side of the relation."""
        return self._args[1]

    def _eval_evalf(self, prec):
        return self.func(*[s._evalf(prec) for s in self.args])

    def _eval_simplify(self, ratio, measure):
        r = self.func(self.lhs.simplify(ratio=ratio, measure=measure),
                      self.rhs.simplify(ratio=ratio, measure=measure))
        if r not in (S.true, S.false):
            if isinstance(self.lhs, Expr) and isinstance(self.rhs, Expr):
                dif = self.lhs - self.rhs
                # We want a Number to compare with zero and be sure to get a
                # True/False answer.  Check if we can deduce that dif is
                # definitively zero or non-zero.  If non-zero, replace with an
                # approximation.  If .equals(0) gives None, cannot be deduced.
                if not dif.has(Symbol):
                    know = dif.equals(0)
                    if know == True:
                        dif = S.Zero
                    elif know == False:
                        dif = dif.evalf()
                # Can definitively compare a Number to zero, if appropriate.
                if dif.is_Number and (dif.is_real or self.func in (Eq, Ne)):
                    # Always T/F (we never return an expression w/ the evalf)
                    r = self.func._eval_relation(dif, S.Zero)

        if measure(r) < ratio*measure(self):
            return r
        else:
            return self

    def __nonzero__(self):
        raise TypeError("cannot determine truth value of\n%s" % self)

    __bool__ = __nonzero__

    def as_set(self):
        """
        Rewrites univariate inequality in terms of real sets

        Examples
        ========

        >>> from sympy import Symbol, Eq
        >>> x = Symbol('x', real=True)
        >>> (x>0).as_set()
        (0, oo)
        >>> Eq(x, 0).as_set()
        {0}

        """
        from sympy.solvers.inequalities import solve_univariate_inequality
        syms = self.free_symbols

        if len(syms) == 1:
            sym = syms.pop()
        else:
            raise NotImplementedError("Sorry, Relational.as_set procedure"
                                      " is not yet implemented for"
                                      " multivariate expressions")

        return solve_univariate_inequality(self, sym, relational=False)


Rel = Relational


class Equality(Relational):
    """An equal relation between two objects.

    Represents that two objects are equal.  If they can be easily shown
    to be definitively equal (or unequal), this will reduce to True (or
    False).  Otherwise, the relation is maintained as an unevaluated
    Equality object.  Use the ``simplify`` function on this object for
    more nontrivial evaluation of the equality relation.

    Examples
    ========

    >>> from sympy import Eq
    >>> from sympy.abc import x, y
    >>> Eq(y, x+x**2)
    y == x**2 + x

    See Also
    ========

    sympy.logic.boolalg.Equivalent : for representing equality between two
        boolean expressions

    Notes
    =====

    This class is not the same as the == operator.  The == operator tests
    for exact structural equality between two expressions; this class
    compares expressions mathematically.

    If either object defines an `_eval_Eq` method, it can be used in place of
    the default algorithm.  If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)`
    returns anything other than None, that return value will be substituted for
    the Equality.  If None is returned by `_eval_Eq`, an Equality object will
    be created as usual.

    """
    rel_op = '=='

    __slots__ = []

    is_Equality = True

    def __new__(cls, lhs, rhs=0, **options):
        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # If one expression has an _eval_Eq, return its results.
            if hasattr(lhs, '_eval_Eq'):
                r = lhs._eval_Eq(rhs)
                if r is not None:
                    return r
            if hasattr(rhs, '_eval_Eq'):
                r = rhs._eval_Eq(lhs)
                if r is not None:
                    return r
            # If expressions have the same structure, they must be equal.
            if lhs == rhs:
                return S.true

            # If appropriate, check if the difference evaluates.  Detect
            # incompatibility such as lhs real and rhs not real.
            if lhs.is_complex and rhs.is_complex:
                r = (lhs - rhs).is_zero
                if r is not None:
                    return _sympify(r)

        return Relational.__new__(cls, lhs, rhs, **options)

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        return _sympify(lhs == rhs)

Eq = Equality


class Unequality(Relational):
    """An unequal relation between two objects.

    Represents that two objects are not equal.  If they can be shown to be
    definitively equal, this will reduce to False; if definitively unequal,
    this will reduce to True.  Otherwise, the relation is maintained as an
    Unequality object.

    Examples
    ========

    >>> from sympy import Ne
    >>> from sympy.abc import x, y
    >>> Ne(y, x+x**2)
    y != x**2 + x

    See Also
    ========
    Equality

    Notes
    =====
    This class is not the same as the != operator.  The != operator tests
    for exact structural equality between two expressions; this class
    compares expressions mathematically.

    This class is effectively the inverse of Equality.  As such, it uses the
    same algorithms, including any available `_eval_Eq` methods.

    """
    rel_op = '!='

    __slots__ = []

    def __new__(cls, lhs, rhs, **options):
        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            is_equal = Equality(lhs, rhs)
            if is_equal == True or is_equal == False:
                return ~is_equal

        return Relational.__new__(cls, lhs, rhs, **options)

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        return _sympify(lhs != rhs)

Ne = Unequality


class _Inequality(Relational):
    """Internal base class for all *Than types.

    Each subclass must implement _eval_relation to provide the method for
    comparing two real numbers.

    """
    __slots__ = []

    def __new__(cls, lhs, rhs, **options):
        lhs = _sympify(lhs)
        rhs = _sympify(rhs)

        evaluate = options.pop('evaluate', global_evaluate[0])

        if evaluate:
            # First we invoke the appropriate inequality method of `lhs`
            # (e.g., `lhs.__lt__`).  That method will try to reduce to
            # boolean or raise an exception.  It may keep calling
            # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
            # In some cases, `Expr` will just invoke us again (if neither it
            # nor a subclass was able to reduce to boolean or raise an
            # exception).  In that case, it must call us with
            # `evaluate=False` to prevent infinite recursion.
            r = cls._eval_relation(lhs, rhs)
            if r is not None:
                return r
            # Note: not sure r could be None, perhaps we never take this
            # path?  In principle, could use this to shortcut out if a
            # class realizes the inequality cannot be evaluated further.

        # make a "non-evaluated" Expr for the inequality
        return Relational.__new__(cls, lhs, rhs, **options)


class _Greater(_Inequality):
    """Not intended for general use

    _Greater is only used so that GreaterThan and StrictGreaterThan may subclass
    it for the .gts and .lts properties.

    """
    __slots__ = ()

    @property
    def gts(self):
        return self._args[0]

    @property
    def lts(self):
        return self._args[1]


class _Less(_Inequality):
    """Not intended for general use.

    _Less is only used so that LessThan and StrictLessThan may subclass it for
    the .gts and .lts properties.

    """
    __slots__ = ()

    @property
    def gts(self):
        return self._args[1]

    @property
    def lts(self):
        return self._args[0]


class GreaterThan(_Greater):
    """Class representations of inequalities.

    Extended Summary
    ================

    The ``*Than`` classes represent inequal relationships, where the left-hand
    side is generally bigger or smaller than the right-hand side.  For example,
    the GreaterThan class represents an inequal relationship where the
    left-hand side is at least as big as the right side, if not bigger.  In
    mathematical notation:

    lhs >= rhs

    In total, there are four ``*Than`` classes, to represent the four
    inequalities:

    +-----------------+--------+
    |Class Name       | Symbol |
    +=================+========+
    |GreaterThan      | (>=)   |
    +-----------------+--------+
    |LessThan         | (<=)   |
    +-----------------+--------+
    |StrictGreaterThan| (>)    |
    +-----------------+--------+
    |StrictLessThan   | (<)    |
    +-----------------+--------+

    All classes take two arguments, lhs and rhs.

    +----------------------------+-----------------+
    |Signature Example           | Math equivalent |
    +============================+=================+
    |GreaterThan(lhs, rhs)       |   lhs >= rhs    |
    +----------------------------+-----------------+
    |LessThan(lhs, rhs)          |   lhs <= rhs    |
    +----------------------------+-----------------+
    |StrictGreaterThan(lhs, rhs) |   lhs >  rhs    |
    +----------------------------+-----------------+
    |StrictLessThan(lhs, rhs)    |   lhs <  rhs    |
    +----------------------------+-----------------+

    In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
    objects also have the .lts and .gts properties, which represent the "less
    than side" and "greater than side" of the operator.  Use of .lts and .gts
    in an algorithm rather than .lhs and .rhs as an assumption of inequality
    direction will make more explicit the intent of a certain section of code,
    and will make it similarly more robust to client code changes:

    >>> from sympy import GreaterThan, StrictGreaterThan
    >>> from sympy import LessThan,    StrictLessThan
    >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
    >>> from sympy.abc import x, y, z
    >>> from sympy.core.relational import Relational

    >>> e = GreaterThan(x, 1)
    >>> e
    x >= 1
    >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
    'x >= 1 is the same as 1 <= x'

    Examples
    ========

    One generally does not instantiate these classes directly, but uses various
    convenience methods:

    >>> e1 = Ge( x, 2 )      # Ge is a convenience wrapper
    >>> print(e1)
    x >= 2

    >>> rels = Ge( x, 2 ), Gt( x, 2 ), Le( x, 2 ), Lt( x, 2 )
    >>> print('%s\\n%s\\n%s\\n%s' % rels)
    x >= 2
    x > 2
    x <= 2
    x < 2

    Another option is to use the Python inequality operators (>=, >, <=, <)
    directly.  Their main advantage over the Ge, Gt, Le, and Lt counterparts, is
    that one can write a more "mathematical looking" statement rather than
    littering the math with oddball function calls.  However there are certain
    (minor) caveats of which to be aware (search for 'gotcha', below).

    >>> e2 = x >= 2
    >>> print(e2)
    x >= 2
    >>> print("e1: %s,    e2: %s" % (e1, e2))
    e1: x >= 2,    e2: x >= 2
    >>> e1 == e2
    True

    However, it is also perfectly valid to instantiate a ``*Than`` class less
    succinctly and less conveniently:

    >>> rels = Rel(x, 1, '>='), Relational(x, 1, '>='), GreaterThan(x, 1)
    >>> print('%s\\n%s\\n%s' % rels)
    x >= 1
    x >= 1
    x >= 1

    >>> rels = Rel(x, 1, '>'), Relational(x, 1, '>'), StrictGreaterThan(x, 1)
    >>> print('%s\\n%s\\n%s' % rels)
    x > 1
    x > 1
    x > 1

    >>> rels = Rel(x, 1, '<='), Relational(x, 1, '<='), LessThan(x, 1)
    >>> print("%s\\n%s\\n%s" % rels)
    x <= 1
    x <= 1
    x <= 1

    >>> rels = Rel(x, 1, '<'), Relational(x, 1, '<'), StrictLessThan(x, 1)
    >>> print('%s\\n%s\\n%s' % rels)
    x < 1
    x < 1
    x < 1

    Notes
    =====

    There are a couple of "gotchas" when using Python's operators.

    The first enters the mix when comparing against a literal number as the lhs
    argument.  Due to the order that Python decides to parse a statement, it may
    not immediately find two objects comparable.  For example, to evaluate the
    statement (1 < x), Python will first recognize the number 1 as a native
    number, and then that x is *not* a native number.  At this point, because a
    native Python number does not know how to compare itself with a SymPy object
    Python will try the reflective operation, (x > 1).  Unfortunately, there is
    no way available to SymPy to recognize this has happened, so the statement
    (1 < x) will turn silently into (x > 1).

    >>> e1 = x >  1
    >>> e2 = x >= 1
    >>> e3 = x <  1
    >>> e4 = x <= 1
    >>> e5 = 1 >  x
    >>> e6 = 1 >= x
    >>> e7 = 1 <  x
    >>> e8 = 1 <= x
    >>> print("%s     %s\\n"*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
    x > 1     x >= 1
    x < 1     x <= 1
    x < 1     x <= 1
    x > 1     x >= 1

    If the order of the statement is important (for visual output to the
    console, perhaps), one can work around this annoyance in a couple ways: (1)
    "sympify" the literal before comparison, (2) use one of the wrappers, or (3)
    use the less succinct methods described above:

    >>> e1 = S(1) >  x
    >>> e2 = S(1) >= x
    >>> e3 = S(1) <  x
    >>> e4 = S(1) <= x
    >>> e5 = Gt(1, x)
    >>> e6 = Ge(1, x)
    >>> e7 = Lt(1, x)
    >>> e8 = Le(1, x)
    >>> print("%s     %s\\n"*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
    1 > x     1 >= x
    1 < x     1 <= x
    1 > x     1 >= x
    1 < x     1 <= x

    The other gotcha is with chained inequalities.  Occasionally, one may be
    tempted to write statements like:

    >>> e = x < y < z
    Traceback (most recent call last):
    ...
    TypeError: symbolic boolean expression has no truth value.

    Due to an implementation detail or decision of Python [1]_, there is no way
    for SymPy to reliably create that as a chained inequality.  To create a
    chained inequality, the only method currently available is to make use of
    And:

    >>> e = And(x < y, y < z)
    >>> type( e )
    And
    >>> e
    And(x < y, y < z)

    Note that this is different than chaining an equality directly via use of
    parenthesis (this is currently an open bug in SymPy [2]_):

    >>> e = (x < y) < z
    >>> type( e )
    <class 'sympy.core.relational.StrictLessThan'>
    >>> e
    (x < y) < z

    Any code that explicitly relies on this latter functionality will not be
    robust as this behaviour is completely wrong and will be corrected at some
    point.  For the time being (circa Jan 2012), use And to create chained
    inequalities.

    .. [1] This implementation detail is that Python provides no reliable
       method to determine that a chained inequality is being built.  Chained
       comparison operators are evaluated pairwise, using "and" logic (see
       http://docs.python.org/2/reference/expressions.html#notin).  This is done
       in an efficient way, so that each object being compared is only
       evaluated once and the comparison can short-circuit.  For example, ``1
       > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2 > 3)``.  The
       ``and`` operator coerces each side into a bool, returning the object
       itself when it short-circuits.  The bool of the --Than operators
       will raise TypeError on purpose, because SymPy cannot determine the
       mathematical ordering of symbolic expressions.  Thus, if we were to
       compute ``x > y > z``, with ``x``, ``y``, and ``z`` being Symbols,
       Python converts the statement (roughly) into these steps:

        (1) x > y > z
        (2) (x > y) and (y > z)
        (3) (GreaterThanObject) and (y > z)
        (4) (GreaterThanObject.__nonzero__()) and (y > z)
        (5) TypeError

       Because of the "and" added at step 2, the statement gets turned into a
       weak ternary statement, and the first object's __nonzero__ method will
       raise TypeError.  Thus, creating a chained inequality is not possible.

           In Python, there is no way to override the ``and`` operator, or to
           control how it short circuits, so it is impossible to make something
           like ``x > y > z`` work.  There was a PEP to change this,
           :pep:`335`, but it was officially closed in March, 2012.

    .. [2] For more information, see these two bug reports:

       "Separate boolean and symbolic relationals"
       `Issue 4986 <https://github.com/sympy/sympy/issues/4986>`_

       "It right 0 < x < 1 ?"
       `Issue 6059 <https://github.com/sympy/sympy/issues/6059>`_

    """
    rel_op = '>='

    __slots__ = ()

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        # We don't use the op symbol here: workaround issue #7951
        return _sympify(lhs.__ge__(rhs))

Ge = GreaterThan


class LessThan(_Less):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '<='

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        # We don't use the op symbol here: workaround issue #7951
        return _sympify(lhs.__le__(rhs))

Le = LessThan


class StrictGreaterThan(_Greater):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '>'

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        # We don't use the op symbol here: workaround issue #7951
        return _sympify(lhs.__gt__(rhs))

Gt = StrictGreaterThan


class StrictLessThan(_Less):
    __doc__ = GreaterThan.__doc__
    __slots__ = ()

    rel_op = '<'

    @classmethod
    def _eval_relation(cls, lhs, rhs):
        # We don't use the op symbol here: workaround issue #7951
        return _sympify(lhs.__lt__(rhs))

Lt = StrictLessThan


# A class-specific (not object-specific) data item used for a minor speedup.  It
# is defined here, rather than directly in the class, because the classes that
# it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
    None: Equality,
    '==': Equality,
    'eq': Equality,
    '!=': Unequality,
    '<>': Unequality,
    'ne': Unequality,
    '>=': GreaterThan,
    'ge': GreaterThan,
    '<=': LessThan,
    'le': LessThan,
    '>': StrictGreaterThan,
    'gt': StrictGreaterThan,
    '<': StrictLessThan,
    'lt': StrictLessThan,
}
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  Source code for symfit.distributions

"""
Some common distributions are defined in this module. That way, users can easily build
more complicated expressions without making them look hard.

I have deliberately chosen to start these function with a capital, e.g.
Gaussian instead of gaussian, because this makes the resulting expressions more
readable.
"""
import sympy

[docs]def Gaussian(x, mu, sig):
    """
    Gaussian pdf.
    :param x: free variable.
    :param mu: mean of the distribution.
    :param sig: standard deviation of the distribution.
    :return: sympy.Expr for a Gaussian pdf.
    """
    return sympy.exp(-(x - mu)**2/(2*sig**2))/sympy.sqrt(2*sympy.pi*sig**2)


[docs]def Exp(x, l):
    """
    Exponential Distribution pdf.
    :param x: free variable.
    :param l: rate parameter.
    :return: sympy.Expr for an Exponential Distribution pdf.
    """
    return l * sympy.exp(- l * x)

# def Beta():
#     sympy.stats.Beta()
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  Source code for symfit.core.argument

from sympy.core.symbol import Symbol
from sympy.tensor import IndexedBase
import inspect

[docs]class Argument(Symbol):
    """
    Base class for ``symfit`` symbols. This helps make ``symfit`` symbols distinguishable from ``sympy`` symbols.

    The ``Argument`` class also makes DRY possible in defining ``Argument``'s: it uses ``inspect`` to read the lhs of the
    assignment and uses that as the name for the ``Argument`` is none is explicitly set.

    For example::

        x = Variable()
        print(x.name)
        >> 'x'
    """
    def __new__(cls, name=None, **assumptions):
        assumptions['real'] = True
        # Super dirty way? to determine the variable name from the calling line.
        if not name or type(name) != str:
            frame, filename, line_number, function_name, lines, index = inspect.stack()[1]
            caller = lines[0].strip()
            if '==' in caller:
                pass
            else:
                try:
                    terms = caller.split('=')
                except ValueError:
                    generated_name = name
                else:
                    generated_name = terms[0].strip()  # lhs
                return super(Argument, cls).__new__(cls, generated_name, **assumptions)
        return super(Argument,cls).__new__(cls, name, **assumptions)

    def __init__(self, name=None, *sympy_args, **sympy_kwargs):
        if name is not None:
            self.name = name
        super(Argument, self).__init__(*sympy_args, **sympy_kwargs)



[docs]class Parameter(Argument):
    """ Parameter objects are used to facilitate bounds on function parameters. """
[docs]    def __init__(self, value=1.0, min=None, max=None, fixed=False, name=None, *sympy_args, **sympy_kwargs):
        """
        :param value: Initial guess value.
        :param min: Lower bound on the parameter value.
        :param max: Upper bound on the parameter value.
        :param fixed: Fix the parameter to ``value`` during fitting.
        :type fixed: bool
        :param name: Name of the Parameter.
        :param sympy_args: Args to pass to ``sympy``.
        :param sympy_kwargs: Kwargs to pass to ``sympy``.
        """
        super(Parameter, self).__init__(name, *sympy_args, **sympy_kwargs)
        self.value = value
        self.fixed = fixed
        if not self.fixed:
            self.min = min
            self.max = max




[docs]class Variable(Argument):
    """ Variable type."""
    pass
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  Source code for symfit.core.fit

from collections import namedtuple, Mapping, OrderedDict
import copy
import sys
import warnings

import sympy
from sympy.core.relational import Relational
import numpy as np
from scipy.optimize import minimize

from symfit.core.argument import Parameter, Variable
from symfit.core.support import seperate_symbols, keywordonly, sympy_to_py, cache, key2str
from symfit.core.leastsqbound import leastsqbound

if sys.version_info >= (3,0):
    import inspect as inspect_sig
else:
    import funcsigs as inspect_sig


class ModelError(Exception):
    pass


[docs]class ParameterDict(object):
    """
    Container for all the parameters and their (co)variances.
    Behaves mostly like an OrderedDict: can be **-ed, allowing the sexy syntax where a model is
    called with values for the Variables and **params. However, under iteration
    it behaves like a list! In other words, it preserves order in the params.
    """
    def __init__(self, params, popt, pcov, *args, **kwargs):
        super(ParameterDict, self).__init__(*args, **kwargs)
        self.__params = params  # list of Parameter instances
        self.__params_dict = dict([(p.name, p) for p in params])
        # popt and pstdev are dicts with parameter names: value pairs.
        self.__popt = dict([(p.name, value) for p, value in zip(params, popt)])
        if pcov is not None:
            # Can be None.
            stdevs = np.sqrt(np.diagonal(pcov))
        else:
            stdevs = [None for _ in params]
        self.__pstdev = dict([(p.name, s) for p, s in zip(params, stdevs)])
        # Covariance matrix
        self.__pcov = pcov

[docs]    def __len__(self):
        """
        Length gives the number of ``Parameter`` instances.

        :return: len(self.__params)
        """
        return len(self.__params)


[docs]    def __iter__(self):
        """
        Iteration over the ``Parameter`` instances.
        :return: iterator
        """
        return iter(self.__params)


[docs]    def __getitem__( self, param_name):
        """
        This method allows this object to be addressed as a dict. This allows for the ** unpacking.
        Therefore return the value of the best fit parameter, as this is what the user expects.

        :param param_name: Name of the ``Parameter`` whose value your interested in.
        :return: the value of the best fit parameter with name 'key'.
        """
        return getattr(self, param_name)


[docs]    def keys(self):
        """
        :return: All ``Parameter`` names.
        """
        return self.__params_dict.keys()


[docs]    def __getattr__(self, name):
        """
        A user can access the value of a parameter directly through this object.

        :param name: Name of a ``Parameter``.
            Naming convention:
            let a = Parameter(). Then:
            .a gives the value of the parameter.
            .a_stdev gives the standard deviation.
        """
        # If a parameter with this name exists, return it immediately
        try:
            return self.__popt[name]
        except KeyError:
            param_name = name
            # Expand this if statement if in the future we allow more suffixes
            if name.endswith('_stdev'):
                param_name = name[:-len('_stdev')]  # everything but the suffix
                try:
                    return self.__pstdev[param_name]
                except KeyError:
                    pass
        raise AttributeError('No Parameter by the name {}.'.format(param_name))


[docs]    def get_value(self, param):
        """
        Deprecated.
        :param param: ``Parameter`` instance.
        :return: returns the numerical value of param
        :raises: DeprecationWarning
        """
        warnings.warn(DeprecationWarning('`.get_value` has been deprecated. Use `.value` instead.'))
        return self.value(param)


[docs]    def get_stdev(self, param):
        """
        Deprecated.
        :param param: ``Parameter`` instance.
        :return: returns the standard deviation of param
        :raises: DeprecationWarning
        """
        warnings.warn(DeprecationWarning('`.get_stdev` has been deprecated. Use `.stdev` instead.'))
        return self.stdev(param)


[docs]    def value(self, param):
        """
        :param param: ``Parameter`` instance.
        :return: returns the numerical value of param
        """
        return self.__popt[param.name]


[docs]    def stdev(self, param):
        """
        :param param: ``Parameter`` instance.
        :return: returns the standard deviation of param
        """
        return self.__pstdev[param.name]


    @property
    def covariance_matrix(self):
        """
        Read-Only Property. Returns the covariance matrix.
        """
        return self.__pcov




[docs]class FitResults(object):
    """
    Class to display the results of a fit in a nice and unambiguous way.
    All things related to the fit are available on this class, e.g.
    - parameters + stdev
    - R squared (Regression coefficient.)
    - fitting status message

    This object is made to behave entirely read-only. This is a bit unnatural
    to enforce in Python but I feel it is necessary to guarantee the integrity
    of the results.
    """
    __params = None  # Private property.
    __infodict = None
    __status_message = None
    __iterations = None
    __ydata = None
    __sigma = None

[docs]    def __init__(self, params, popt, pcov, infodic, mesg, ier, ydata=None, sigma=None):
        """
        Excuse the ugly names of most of these variables, they are inherited. Should be changed.
        from scipy.
        :param params: list of ``Parameter``'s.
        :param popt: best fit parameters, same ordering as in params.
        :param pcov: covariance matrix.
        :param infodic: dict with fitting info.
        :param mesg: Status message.
        :param ier: Number of iterations.
        :param ydata:
        """
        # Validate the types in rough way
        assert(type(infodic) == dict)
        self.__infodict = infodic
        assert(type(mesg) == str)
        self.__status_message = mesg
        assert(type(ier) == int)
        self.__iterations = ier
        # assert(type(ydata) == np.ndarray)
        self.__ydata = ydata
        self.__params = ParameterDict(params, popt, pcov)
        self.__sigma = sigma


[docs]    def __str__(self):
        """
        Pretty print the results as a table.
        :return:
        """
        res = '\nParameter Value        Standard Deviation\n'
        for p in self.params:
            value = self.params.value(p)
            value_str = '{:e}'.format(value) if value is not None else 'None'
            stdev = self.params.stdev(p)
            stdev_str = '{:e}'.format(stdev) if stdev is not None else 'None'
            res += '{:10}{} {}\n'.format(p.name, value_str, stdev_str, width=20)

        res += 'Fitting status message: {}\n'.format(self.status_message)
        res += 'Number of iterations:   {}\n'.format(self.infodict['nfev'])
        res += 'Regression Coefficient: {}\n'.format(self.r_squared)
        return res


    @property
    def r_squared(self):
        """
        r_squared Property.

        :return: Regression coefficient.
        """
        if self._r_squared is not None:
            return self._r_squared
        else:
            return float('nan')

    @r_squared.setter
    def r_squared(self, value):
        self._r_squared = value

    #
    # READ-ONLY Properties
    # What follows are all the read-only properties of this object.
    # Their definitions are mostly trivial, but necessary to make sure that
    # FitResults can't be changed.
    #

    @property
    def infodict(self):
        """
        Read-only Property.
        """
        return self.__infodict

    @property
    def status_message(self):
        """
        Read-only Property.
        """
        return self.__status_message

    @property
    def iterations(self):
        """
        Read-only Property.
        """
        return self.__iterations

    @property
    def params(self):
        """
        Read-only Property.
        """
        return self.__params

[docs]    def stdev(self, param):
        """
        Return the standard deviation in a given parameter as found by the fit.
        :param param: ``Parameter`` Instance.
        :return: Standard deviation of ``param``.
        """
        return self.params.stdev(param)


[docs]    def value(self, param):
        """
        Return the value in a given parameter as found by the fit.
        :param param: ``Parameter`` Instance.
        :return: Value of ``param``.
        """
        return self.params.value(param)


[docs]    def variance(self, param):
        """
        Return the variance in a given parameter as found by the fit.
        :param param: ``Parameter`` Instance.
        :return: Variance of ``param``.
        """
        param_number = list(self.params).index(param)
        return self.params.covariance_matrix[param_number, param_number]


[docs]    def covariance(self, param_1, param_2):
        """
        Return the covariance between param_1 and param_2.
        :param param_1: ``Parameter`` Instance.
        :param param_2: ``Parameter`` Instance.
        :return: Covariance of the two params.
        """
        param_1_number = list(self.params).index(param_1)
        param_2_number = list(self.params).index(param_2)
        return self.params.covariance_matrix[param_1_number, param_2_number]



[docs]class Model(object):
    """
    Model represents a symbolic function and all it's derived properties such as sum of squares, jacobian etc.
    Models can be initiated from several objects::

        a = Model.from_dict({y: x**2})
        b = Model(y=x**2)

    Models are callable. The usual rules apply to the ordering of the arguments:

    * first independent variables, then dependent variables, then parameters.
    * within each of these groups they are ordered alphabetically.
    """
[docs]    def __init__(self, *ordered_expressions, **named_expressions):
        """
        Initiate a Model from keyword arguments::

            b = Model(y=x**2)

        :param ordered_expressions: sympy Expr
        :param named_expressions: sympy Expr
        """
        model_dict = {sympy.Dummy('y_{}'.format(index + 1)): expr for index, expr in enumerate(ordered_expressions)}
        model_dict.update(
            {Variable(name=dep_var_name): expr for dep_var_name, expr in named_expressions.items()}
        )
        if model_dict:
            self._init_from_dict(model_dict)


    @classmethod
[docs]    def from_dict(cls, model_dict):
        """
        Initiate a Model from a dict::

            a = Model.from_dict({y: x**2})

        Preferred way of initiating ``Model``.

        :param model_dict: dict of ``Expr``, where dependent variables are the keys.
        """
        self = cls()
        self._init_from_dict(model_dict)

        return self


    def _init_from_dict(self, model_dict):
        """
        Initiate self from a model_dict to make sure attributes such as vars, params are available.

        Creates lists of alphabetically sorted independent vars, dependent vars, sigma vars, and parameters.
        Finally it creates a signature for this model so it can be called nicely. This signature only contains
        independent vars and params, as one would expect.

        :param model_dict: dict of (dependent_var, expression) pairs.
        """
        # try: # Normal vars have name's, Indexed objects don't directly.
        #     [symbol.name for symbol in model_dict.keys()]
        # except AttributeError as err:
        #     raise err
        #     sort_func = lambda symbol: symbol.base.label.name
        # else:
        sort_func = lambda symbol: symbol.name
        self.model_dict = OrderedDict(sorted(model_dict.items(), key=lambda i: sort_func(i[0])))
        self.dependent_vars = sorted(model_dict.keys(), key=sort_func)

        # Extract all the params and vars as a sorted, unique list.
        expressions = model_dict.values()
        _params, self.independent_vars = set([]), set([])
        for expression in expressions:
            vars, params = seperate_symbols(expression)
            _params.update(params)
            self.independent_vars.update(vars)
        # Although unique now, params and vars should be sorted alphabetically to prevent ambiguity
        self.params = sorted(_params, key=lambda symbol: symbol.name)
        self.independent_vars = sorted(self.independent_vars, key=sort_func)

        # Make Variable object corresponding to each var.
        self.sigmas = {var: Variable(name='sigma_{}'.format(var.name)) for var in self.dependent_vars}

        self.__signature__ = self._make_signature()

    def _make_signature(self):
        # Handle args and kwargs according to the allowed names.
        parameters = [  # Note that these are inspect_sig.Parameter's, not symfit parameters!
            inspect_sig.Parameter(arg.name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD)
                for arg in self.independent_vars + self.params
        ]
        return inspect_sig.Signature(parameters=parameters)

[docs]    def __len__(self):
        """
        :return: the number of dependent variables for this model.
        """
        return len(self.model_dict)


[docs]    def __eq__(self, other):
        """
        ``Model``'s are considered equal when they have the same dependent variables,
        and the same expressions for those dependent variables. The same is defined here
        as passing sympy == for the vars themselves, and as expr1 - expr2 == 0 for the
        expressions. For more info check the `sympy docs<https://github.com/sympy/sympy/wiki/Faq>`_.
        :param other: Instance of ``Model``.
        :return: bool
        """
        if len(self) is not len(other):
            return False
        else:
            for var_1, var_2 in zip(self.model_dict, other.model_dict):
                if var_1 != var_2:
                    return False
                else:
                    if not self.model_dict[var_1].expand() - other.model_dict[var_2].expand() == 0:
                        return False
            else:
                return True


[docs]    def __call__(self, *args, **kwargs):
        """
        Evaluate the model for a certain value of the independent vars and parameters.
        Signature for this function contains independent vars and parameters, NOT dependent and sigma vars.

        Can be called with both ordered and named parameters. Order is independent vars first, then parameters.
        Alphabetical order within each group.

        :param args:
        :param kwargs:
        :return: A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple,
            even for scalar valued functions. This is done for consistency.
        """
        bound_arguments = self.__signature__.bind(*args, **kwargs)
        Ans = namedtuple('Ans', [var.name for var in self.dependent_vars])
        return Ans(*[expression(**bound_arguments.arguments) for expression in self.numerical_components])


[docs]    def __str__(self):
        """
        Printable representation of this model.
        :return: str
        """
        template = "{}({}; {}) = {}"
        parts = []
        for var in self.dependent_vars:
            parts.append(template.format(
                    var,
                    ", ".join(arg.name for arg in self.independent_vars),
                    ", ".join(arg.name for arg in self.params),
                    self.model_dict[var]
                )
            )
        return "\n".join(parts)


    @property
    # @cache
    def components(self):
        """
        :return: An iterator over the symbolic components of this model
        """
        return [self.model_dict[var] for var in self.dependent_vars]

    @property
    # @cache
    def chi_squared(self):
        """
        :return: Symbolic :math:`\\chi^2`
        """
        # return sum((y - f)**2/self.sigmas[y]**2 for y, f in self.model_dict.items())
        return sum(((f - y)/self.sigmas[y])**2 for y, f in self.model_dict.items())

    @property
    # @cache
    def chi(self):
        """
        :return: Symbolic Square root of :math:`\\chi^2`. Required for MINPACK optimization only. Denoted as :math:`\\sqrt(\\chi^2)`
        """
        return sympy.sqrt(self.chi_squared)#.replace(sympy.Abs, sympy.Id)

    @property
    # @cache
    def chi_jacobian(self):
        """
        Return a symbolic jacobian of the :math:`\\sqrt(\\chi^2)` function.
        Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector! This is because that's what leastsq needs.
        """
        jac = []
        for param in self.params:
            # Differentiate to every param
            f = sympy.diff(self.chi, param)
            jac.append(f)
        return jac

    @property
    # @cache
    def chi_squared_jacobian(self):
        """
        Return a symbolic jacobian of the :math:`\\chi^2` function.
        Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector!
        """
        jac = []
        for param in self.params:
            # Differentiate to every param
            f = sympy.diff(self.chi_squared, param)
            jac.append(f)
        return jac

    @property
    # @cache
    def jacobian(self):
        """
        :return: Jacobian 'Matrix' filled with the symbolic expressions for all the partial derivatives.
        Partial derivatives are of the components of the function with respect to the Parameter's,
        not the independent Variable's.
        """
        return [[sympy.diff(self.model_dict[var], param) for param in self.params] for var in self.dependent_vars]

    @property
    # @cache
    def ss_res(self):
        """
        :return: Residual sum of squares. Similar to chi_squared, but without considering weights.
        """
        return sum((y - f)**2 for y, f in self.model_dict.items())

    @property
    # @cache
    def numerical_chi_squared(self):
        """
        :return: lambda function of the ``.chi_squared`` method, to be used in numerical optimisation.
        """
        return sympy_to_py(self.chi_squared, self.vars, self.params)

    @property
    # @cache
    def numerical_components(self):
        """
        :return: lambda functions of each of the components in model_dict, to be used in numerical calculation.
        """
        return [sympy_to_py(self.model_dict[var], self.independent_vars, self.params) for var in self.dependent_vars]

    @property
    # @cache
    def numerical_chi(self):
        """
        :return: lambda function of the ``.chi`` method, to be used in MINPACK optimisation.
        """
        return sympy_to_py(self.chi, self.vars, self.params)

    @property
    # @cache
    def numerical_chi_jacobian(self):
        """
        :return: lambda functions of the jacobian of the ``.chi`` method, which can be used in numerical optimization.
        """
        return [sympy_to_py(component, self.vars, self.params) for component in self.chi_jacobian]

    @property
    # @cache
    def numerical_chi_squared_jacobian(self):
        """
        :return: lambda functions of the jacobian of the ``.chi_squared`` method.
        """
        return [sympy_to_py(component, self.vars, self.params) for component in self.chi_squared_jacobian]

    @property
    # @cache
    def numerical_jacobian(self):
        """
        :return: lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.
        """
        return [[sympy_to_py(partial, self.independent_vars, self.params) for partial in row] for row in self.jacobian]
        # return [[sympy_to_py(partial, self.vars, self.params) for partial in row] for row in self.jacobian]

    # @property
    # @cache
    # def numerical_chi_jacobian(self):
    #     """
    #     :return: lambda function of the jacobian, which can be used in numerical optimization.
    #     """
    #     return [sympy_to_py(component, self.vars, self.params) for component in self.jacobian(self.chi, self.params)]

    @property
    @cache
    def vars(self):
        """
        :return: Returns a list of dependent, independent and sigma variables, in that order.
        """
        return self.independent_vars + self.dependent_vars + [self.sigmas[var] for var in self.dependent_vars]

    @property
    def bounds(self):
        """
        :return: List of tuples of all bounds on parameters.
        """
        return [(np.nextafter(p.value, 0), p.value) if p.fixed else (p.min, p.max) for p in self.params]



[docs]class TaylorModel(Model):
    """
    A first-order Taylor expansion of a model around given parameter values (:math:`p_0`).
    Is used by NonLinearLeastSquares. Currently only a first order expansion is implemented.
    """
    def __init__(self, model):
        params_0 = OrderedDict(
            [(p, Parameter(name='{}_0'.format(p.name))) for p in model.params]
        )
        model_dict = {}
        for var, component, jacobian_vec in zip(model.dependent_vars, model.components, model.jacobian):
            linear = component.subs(params_0.items())
            for (p, p0), jac in zip(params_0.items(), jacobian_vec): # params_0 is assumed OrderedDict!
                linear += jac.subs(params_0.items()) * (p - p0)
            model_dict[var] = linear
        self.params_0 = params_0
        super(TaylorModel, self).__init__(**key2str(model_dict))
        self.model_dict_orig = copy.copy(self.model_dict)

    @property
    def params(self):
        """
        params for a TaylorModel is defined differently, since the normal Model.params has
        both the :math:`p_0` ``Parameter``'s around which to expand, and the parameters to
        be fitted. But when calling on the param property, you expect to get only the free
        parameters, not the :math:`p_0` around which to expand.
        """
        return [p for p in self._params if p not in self.params_0.values()]

    @params.setter
    def params(self, items):
        self._params = items

    @property
    def p0(self):
        return self._p0

    @p0.setter
    def p0(self, expand_at):
        """
        :param expand_at: dict of ``Parameter``: float pairs around which to expand.
        """
        self._p0 = {self.params_0[p]: float(value) for p, value in expand_at.items()}
        for var in self.model_dict_orig:
            self.model_dict[var] = self.model_dict_orig[var].subs(self.p0.items())

[docs]    def __str__(self):
        """
        When printing a TaylorModel, the point around which the expansion took place is included.

        For example, a Taylor expansion of {y: sin(w * x)} at w = 0 would be printed as::

            @{w: 0.0} -> y(x; w) = w*x
        """
        sup = super(TaylorModel, self).__str__()
        return '@{} -> {}'.format(self.p0, sup)




[docs]class Constraint(Model):
    """
    Constraints are a special type of model in that they have a type: >=, == etc.
    They are made to have lhs - rhs == 0 of the original expression.

    For example, Eq(y + x, 4) -> Eq(y + x - 4, 0)

    Since a constraint belongs to a certain model, it has to be initiated with knowledge of it's parent model.
    This is important because all ``numerical_`` methods are done w.r.t. the parameters and variables of the parent
    model, not the constraint! This is because the constraint might not have all the parameter or variables that the
    model has, but in order to compute for example the Jacobian we still want to derive w.r.t. all the parameters,
    not just those present in the constraint.
    """
    constraint_type = sympy.Eq

[docs]    def __init__(self, constraint, model):
        """
        :param constraint: constraint that model should be subjected to.
        :param model: A constraint is always tied to a model.
        :return:
        """
        # raise Exception(model)
        if isinstance(constraint, Relational):
            self.constraint_type = type(constraint)
            if isinstance(model, Model):
                self.model = model
            else:
                raise TypeError('The model argument must be of type Model.')
            super(Constraint, self).__init__(constraint.lhs - constraint.rhs)
        else:
            raise TypeError('Constraints have to be initiated with a subclass of sympy.Relational')


    @property
    # @cache
    def jacobian(self):
        """
        :return: Jacobian 'Matrix' filled with the symbolic expressions for all the partial derivatives.
            Partial derivatives are of the components of the function with respect to the Parameter's,
            not the independent Variable's.
        """
        return [[sympy.diff(self.model_dict[var], param) for param in self.model.params] for var in self.dependent_vars]

    @property
    # @cache
    def numerical_components(self):
        """
        :return: lambda functions of each of the components in model_dict, to be used in numerical calculation.
        """
        return [sympy_to_py(self.model_dict[var], self.model.vars, self.model.params) for var in self.dependent_vars]

    @property
    # @cache
    def numerical_jacobian(self):
        """
        :return: lambda functions of the jacobian matrix of the function, which can be used in numerical optimization.
        """
        return [[sympy_to_py(partial, self.model.vars, self.model.params) for partial in row] for row in self.jacobian]

    def _make_signature(self):
        # Handle args and kwargs according to the allowed names.
        parameters = [  # Note that these are inspect_sig.Parameter's, not symfit parameters!
            inspect_sig.Parameter(arg.name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD)
                for arg in self.model.vars + self.model.params
        ]
        return inspect_sig.Signature(parameters=parameters)



[docs]class BaseFit(object):
    """
    Abstract Base Class for all fitting objects. Most importantly, it takes care
    of linking the provided data to variables. The allowed variables are extracted
    from the model.
    """
    @keywordonly(absolute_sigma=None)
[docs]    def __init__(self, model, *ordered_data, **named_data):
        """
        :param model: (dict of) sympy expression or ``Model`` object.
        :param absolute_sigma bool: True by default. If the sigma is only used
            for relative weights in your problem, you could consider setting it to
            False, but if your sigma are measurement errors, keep it at True.
            Note that curve_fit has this set to False by default, which is wrong in
            experimental science.
        :param ordered_data: data for dependent, independent and sigma variables. Assigned in
            the following order: independent vars are assigned first, then dependent
            vars, then sigma's in dependent vars. Within each group they are assigned in
            alphabetical order.
        :param named_data: assign dependent, independent and sigma variables data by name.

        Standard deviation can be provided to any variable. They have to be prefixed
        with sigma_. For example, let x be a Variable. Then sigma_x will give the
        stdev in x.
        """
        absolute_sigma = named_data.pop('absolute_sigma')
        if isinstance(model, Mapping):
            self.model = Model.from_dict(model)
        elif isinstance(model, Model):
            self.model = model
        else:
            self.model = Model(model)

        # Handle ordered_data and named_data according to the allowed names.
        var_names = [var.name for var in self.model.vars]
        parameters = [  # Note that these are inspect_sig.Parameter's, not symfit parameters!
            inspect_sig.Parameter(name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD, default=1 if name.startswith('sigma_') else None)
                for name in var_names
        ]

        signature = inspect_sig.Signature(parameters=parameters)
        bound_arguments = signature.bind(*ordered_data, **named_data)
        # Include default values in bound_argument object
        for param in signature.parameters.values():
            if param.name not in bound_arguments.arguments:
                bound_arguments.arguments[param.name] = param.default

        self.data = copy.copy(bound_arguments.arguments)   # ordereddict of the data. Only copy the dict, not the data.
        # self.sigmas = {name: self.data.pop(name) for name in var_names if name.startswith('sigma_')}
        self.sigmas = {name: self.data[name] for name in var_names if name.startswith('sigma_')}

        # Replace sigmas that are constant by an array of that constant
        for var, sigma in self.model.sigmas.items():
            # print(var, sigma)
            try:
                iter(self.data[sigma.name])
            except TypeError:
                try:
                    self.data[sigma.name] *= np.ones(self.data[var.name].shape)
                except AttributeError:
                    # If no attribute shape exists, data is also not an array
                    pass

        # If user gives a preference, use that. Otherwise, use True if at least one sigma is
        # given, False if no sigma is given.
        if absolute_sigma is not None:
            self.absolute_sigma = absolute_sigma
        else:
            for name, value in self.sigmas.items():
                if value is not 1:
                    self.absolute_sigma = True
                    break
            else:
                self.absolute_sigma = False


    @property
    @cache
    def dependent_data(self):
        """
        Read-only Property

        :return: Data belonging to each dependent variable.
        :rtype: dict with variable names as key, data as value.
        """
        return {var.name: self.data[var.name] for var in self.model.dependent_vars}

    @property
    @cache
    def independent_data(self):
        """
        Read-only Property

        :return: Data belonging to each independent variable.
        :rtype: dict with variable names as key, data as value.
        """
        return {var.name: self.data[var.name] for var in self.model.independent_vars}

    @property
    @cache
    def sigma_data(self):
        """
        Read-only Property

        :return: Data belonging to each sigma variable.
        :rtype: dict with variable names as key, data as value.
        """
        return {var.name: self.data[var.name] for var in self.model.sigmas.values()}

[docs]    def execute(self, *args, **kwargs):
        """
        Every fit object has to define an execute method.
        Any * and ** arguments will be passed to the fitting module that is being wrapped, e.g. leastsq.

        :args kwargs:
        :return: Instance of FitResults
        """
        raise NotImplementedError('Every subclass of BaseFit must have an execute method.')


[docs]    def error_func(self, *args, **kwargs):
        """
        Every fit object has to define an error_func method, giving the function to be minimized.
        """
        raise NotImplementedError('Every subclass of BaseFit must have an error_func method.')


[docs]    def eval_jacobian(self, *args, **kwargs):
        """
        Every fit object has to define an eval_jacobian method, giving the jacobian of the
        function to be minimized.
        """
        raise NotImplementedError('Every subclass of BaseFit must have an eval_jacobian method.')


    @property
    def initial_guesses(self):
        """
        :return: Initial guesses for every parameter.
        """
        return np.array([param.value for param in self.model.params])



[docs]class NumericalLeastSquares(BaseFit):
    """
    Solves least squares numerically using leastsqbounds. Gives results consistent with MINPACK except
    when borders are provided.
    """
[docs]    def execute(self, *options, **kwoptions):
        """
        :param options: Any postional arguments to be passed to leastsqbound
        :param kwoptions: Any named arguments to be passed to leastsqbound
        """

        try:
            popt, cov_x, infodic, mesg, ier = leastsqbound(
                self.error_func,
                Dfun=self.eval_jacobian,
                args=(self.data.values(),),
                x0=self.initial_guesses,
                bounds=self.model.bounds,
                full_output=True,
                *options,
                **kwoptions
            )
        except ValueError:
            # The exact Jacobian can contain nan's, causing the fit to fail. In such cases, try again without providing an exact jacobian.
            popt, cov_x, infodic, mesg, ier = leastsqbound(
                self.error_func,
                args=(self.data.values(),),
                x0=self.initial_guesses,
                bounds=self.model.bounds,
                full_output=True,
                *options,
                **kwoptions
            )

        if self.absolute_sigma:
            s_sq = 1
        else:
            # Rescale the covariance matrix with the residual variance
            ss_res = np.sum(infodic['fvec']**2)
            degrees_of_freedom = len(self.data[self.model.dependent_vars[0].name]) - len(popt)

            s_sq = ss_res / degrees_of_freedom

        pcov = cov_x * s_sq if cov_x is not None else None

        self._fit_results = FitResults(
            params=self.model.params,
            popt=popt,
            pcov=pcov,
            infodic=infodic,
            mesg=mesg,
            ier=ier,
            # ydata=list(self.data.values())[0] if len(self.model.dependent_vars) == 1 else None,
            # sigma=self.sigma,
        )
        self._fit_results.r_squared = r_squared(self.model, self._fit_results, self.data)
        return self._fit_results



    def error_func(self, p, data):
        return self.model.numerical_chi(*(list(data) + list(p))).flatten()

    def eval_jacobian(self, p, data):
        return np.array([component(*(list(data) + list(p))).flatten() for component in self.model.numerical_chi_jacobian]).T



[docs]class LinearLeastSquares(BaseFit):
    """
    Experimental. Solves the linear least squares problem analytically. Involves no iterations
    or approximations, and therefore gives the best possible fit to the data.

    The ``Model`` provided has to be linear.

    Currently, since this object still has to mature, it suffers from the following limitations:
    * It does not check if the model can be linearized by a simple substitution.
      For example, exp(a * x) -> b * exp(x). You will have to do this manually.
    * Does not use bounds or guesses on the ``Parameter``'s. Then again, it doesn't have too,
      since you have an exact solution. No guesses required.
    * It only works with scalar functions. This is strictly enforced.

    .. _Blobel: http://www.desy.de/~blobel/blobel_leastsq.pdf
    .. _Wiki: https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
    """
[docs]    def __init__(self, *args, **kwargs):
        """
        :raises: ``ModelError`` in case of a non-linear model or when a vector
            valued function is provided.
        """
        super(LinearLeastSquares, self).__init__(*args, **kwargs)
        if not self.is_linear(self.model):
            raise ModelError('This Model is non-linear. Please use NonLinearLeastSquares instead.')
        elif len(self.model) > 1:
            raise ModelError('Currently only scalar valued functions are supported.')


    @staticmethod
[docs]    def is_linear(model):
        """
        Test whether model is of linear form in it's parameters.

        Currently this function does not recognize if a model can be considered linear
        by a simple substitution, such as exp(k x) = k' exp(x).

        .. _Wiki: https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

        :param model: ``Model`` instance
        :return: True or False
        """
        terms = {}
        for var, expr in model.model_dict.items():
            terms.update(sympy.collect(sympy.expand(expr), model.params, evaluate=False))
        difference = set(terms.keys()) ^ set(model.params) # Symmetric difference
        return not difference or difference == {1}  # Either no difference or it still contains O(1) terms


[docs]    def best_fit_params(self):
        """
        Fits to the data and returns the best fit parameters.
        :return: dict containing parameters and their best-fit values.
        """
        terms_per_component = []
        for expr in self.model.chi_squared_jacobian:
            # Collect terms linear in the parameters. Returns a dict with parameters and
            # their prefactor as function of variables. Includes O(1)
            terms = sympy.collect(sympy.expand(expr), self.model.params, evaluate=False)
            # Evaluate every term separately and 'sum out' the variables. This results in
            # a system that is very easy to solve.
            for param in terms:
                terms[param] = np.sum(terms[param](**self.data))

            terms_per_component.append(terms)

        # Reconstruct the linear system.
        system = [sum(factor*param for param, factor in terms.items()) for terms in terms_per_component]
        sol = sympy.solve(system, self.model.params, dict=True)
        try:
            assert len(sol) == 1 # Future Homer should think about what to do with multiple/no solutions
        except AssertionError:
            raise Exception('Got an unexpected number of solutions:', len(sol))
        return sol[0] # Dict of param: value pairs.


[docs]    def covariance_matrix(self, best_fit_params):
        """
        Given best fit parameters, this function finds the covariance matrix.
        This matrix gives the (co)variance in the parameters.

        :param best_fit_params: ``dict`` of best fit parameters as given by .best_fit_params()
        :return: covariance matrix.
        """
        # The rest of this method is concerned with determining the covariance matrix
        # Weight matrix. Diagonal matrix for now.
        sigma = list(self.sigma_data.values())[0]
        W = np.diag(1/sigma.flatten()**2)

        # Calculate the covariance matrix from the Jacobian X @ best_params.
        # In X, we do NOT sum over the components by design. This is because
        # it has to be contracted with W, the weight matrix.
        kwargs = {p.name: float(value) for p, value in best_fit_params.items()}
        kwargs.update(self.independent_data)
        # kwargs.update(self.data)
        X = np.atleast_2d([
            (np.ones(sigma.shape[0]) * comp(**kwargs)).flatten()
            for comp in self.model.numerical_jacobian[0]
        ])

        cov_matrix = np.linalg.inv(X.dot(W).dot(X.T))
        if not self.absolute_sigma:
            kwargs.update(self.data)
            # Sum of squared residuals. To be honest, I'm not sure why ss_res does not give the
            # right result but by using the chi_squared the results are compatible with curve_fit.
            S = np.sum(self.model.numerical_chi_squared(**kwargs), dtype=float) / (len(W) - len(self.model.params))
            cov_matrix *= S

        return cov_matrix


[docs]    def execute(self):
        """
        Execute an analytical (Linear) Least Squares Fit. This object works by symbolically
        solving when :math:`\nabla \chi^2 = 0`.

        To perform this task the expression of :math:`\nabla \chi^2` is determined, ignoring that
        :math:`\chi^2` involves summing over all terms. Then the sum is performed by substituting
        the variables by their respective data and summing all terms, while leaving the parameters
        symbolic.

        The resulting system of equations is then easily solved with ``sympy.solve``.
        :return: ``FitResult``
        """
        # Obtain the best fit params first.
        best_fit_params = self.best_fit_params()
        cov_matrix = self.covariance_matrix(best_fit_params=best_fit_params)

        self._fit_results = FitResults(
            params=self.model.params,
            popt=[best_fit_params[param] for param in self.model.params],
            pcov=cov_matrix,
            infodic={'nfev': 0},
            mesg='',
            ier=0,
        )
        self._fit_results.r_squared = r_squared(self.model, self._fit_results, self.data)
        return self._fit_results




[docs]class NonLinearLeastSquares(BaseFit):
    """
    Experimental.
    Implements non-linear least squares. Works by a two step process:
    First the model is linearised by doing a first order taylor expansion
    around the guesses for the parameters.
    Then a LinearLeastSquares fit is performed. This is iterated until
    a fit of sufficient quality is obtained.

    Sensitive to good initial guesses. Providing good initial guesses is a must.

    .. [wiki] https://en.wikipedia.org/wiki/Non-linear_least_squares
    """
    def __init__(self, *args, **kwargs):
        super(NonLinearLeastSquares, self).__init__(*args, **kwargs)
        # Make an approximation of model at the initial guesses
        # self.model_appr = self.linearize(self.model, {p: p.value for p in self.model.params})
        self.model_appr = TaylorModel(self.model)
        # Set initial expansion point
        self.model_appr.p0 = {
            param: value for param, value in zip(self.model_appr.params, self.initial_guesses)
        }

[docs]    def execute(self, relative_error=0.0001, max_iter=5):
        """
        Perform a non-linear least squares fit.
        :param relative_error: Relative error between the sum of squares
            of subsequent itterations. Once smaller than the value specified,
            the fit is considered complete.
        :param max_iter: Maximum number of iterations before giving up.
        :return: Instance of ``FitResults``.
        """
        fit = LinearLeastSquares(self.model_appr, absolute_sigma=self.absolute_sigma, **self.data)

        # if fit.is_linear(self.model):
        #     return fit.execute()
        # else:
        i = 0
        S_k1 = np.sum(
            self.model.numerical_chi_squared(
                *self.data.values(),
                **{p.name: float(value) for p, value in zip(self.model.params, self.initial_guesses)}
            )
        )
        while i < max_iter:
            fit_params = fit.best_fit_params()
            S_k2 = np.sum(
                self.model.numerical_chi_squared(
                    *self.data.values(),
                    **{p.name: float(value) for p, value in fit_params.items()}
                )
            )
            if not S_k1 < 0 and np.abs(S_k2 - S_k1) <= relative_error * np.abs(S_k1):
                break
            else:
                S_k1 = S_k2
                # Update the model with a better approximation
                self.model_appr.p0 = fit_params
                i += 1

        cov_matrix = fit.covariance_matrix(best_fit_params=fit_params)

        self._fit_results = FitResults(
            params=self.model.params,
            popt=[float(fit_params[param]) for param in self.model.params],
            pcov=cov_matrix,
            infodic={'nfev': i},
            mesg='',
            ier=0,
        )
        self._fit_results.r_squared = r_squared(self.model, self._fit_results, self.data)
        return self._fit_results




[docs]class Fit(NumericalLeastSquares):
    """
    Wrapper for NumericalLeastSquares to give it a more appealing name.
    In the future I hope to make this object more intelligent so it can
    search out the best fitting object based on certain qualifiers and
    return that instead.

    Therefore do not assume this object to always behave as a certain
    fitting type! If it matters to you to have for example ``NumericalLeastSquares``
    or ``NonLinearLeastSquares`` for your problem, use those objects directly.
    What of course will not change, is the API.
    """
[docs]    def execute(self, *options, **kwoptions):
        """
        Execute ``Fit``, giving any options and kwoptions to
        ``NumericalLeastSquares``.
        """
        return super(Fit, self).execute(*options, **kwoptions)




[docs]class Minimize(BaseFit):
    """
    Minimize a model subject to constraints. A wrapper for ``scipy.optimize.minimize``.
    ``Minimize`` currently doesn't work when data is provided to Variables, and doesn't support vector functions.
    """
    @keywordonly(constraints=None)
[docs]    def __init__(self, model, *args, **kwargs):
        """
        Because in a lot of use cases for Minimize no data is supplied to variables,
        all the empty variables are replaced by an empty np array.

        :constraints: constraints the minimization is subject to.
        :type constraints: list
        """
        # constraints = kwargs.pop('constraints') if 'constraints' in kwargs else None
        constraints = kwargs.pop('constraints')
        super(Minimize, self).__init__(model, *args, **kwargs)
        for var, data in self.data.items():
            if data is None: # Replace None by an empty array
                # self.data[var] = np.array([])
                self.data[var] = 0

        try:
            assert len(self.model) == 1
        except AssertionError:
            raise TypeError('Minimize (currently?) only works with scalar functions.')

        self.constraints = []
        if constraints:
            for constraint in constraints:
                if isinstance(model, Constraint):
                    self.constraints.append(constraint)
                else:
                    self.constraints.append(Constraint(constraint, self.model))



[docs]    def error_func(self, p, data):
        """
        The function to be optimized. Scalar valued models are assumed. For Minimize the thing to evaluate is simply
        self.model(*(list(data) + list(p)))

        :param p: array of floats for the parameters.
        :param data: data to be provided to ``Variable``'s.
        """
        # if self.dependent_data:
        #     ans = self.model.numerical_chi_squared(*(list(self.data.values()) + list(p)))
        # else:
        ans, = self.model(*(list(data) + list(p)))
        return ans


[docs]    def eval_jacobian(self, p, data):
        """
        Takes partial derivatives of model w.r.t. each ``Parameter``.

        :param p: array of floats for the parameters.
        :param data: data to be provided to ``Variable``'s.
        :return: array of length number of ``Parameter``'s in the model, with all partial derivatives evaluated at p, data.
        """
        ans = []
        for row in self.model.numerical_jacobian:
            for partial_derivative in row:
                ans.append(partial_derivative(*(list(data) + list(p))).flatten())
        # for row in self.partial_jacobian:
        #     for partial_derivative in row:
        #         ans.append(partial_derivative(**{param.name: value for param, value in zip(self.model.params, p)}))
        else:
            return np.array(ans)


    def execute(self, method='SLSQP', *args, **kwargs):
        ans = minimize(
            self.error_func,
            self.initial_guesses,
            method=method,
            args=([value for key, value in self.data.items() if key in self.model.__signature__.parameters],),
            bounds=self.model.bounds,
            constraints=self.scipy_constraints,
            jac=self.eval_jacobian,
            # options={'disp': True},
        )

        # Build infodic
        infodic = {
            'fvec': ans.fun,
            'nfev': ans.nfev,
        }
        # s_sq = (infodic['fvec'] ** 2).sum() / (len(self.ydata) - len(popt))
        # pcov = cov_x * s_sq if cov_x is not None else None

        self.__fit_results = FitResults(
            params=self.model.params,
            popt=ans.x,
            pcov=None,
            infodic=infodic,
            mesg=ans.message,
            ier=ans.nit,
        )
        try:
            self.__fit_results.r_squared = r_squared(self.model, self.__fit_results, self.data)
        except ValueError:
            self.__fit_results.r_squared = float('nan')
        return self.__fit_results

    @property
    def scipy_constraints(self):
        """
        Read-only Property of all constraints in a scipy compatible format.

        :return: dict of scipy compatible statements.
        """
        cons = []
        types = { # scipy only distinguishes two types of constraint.
            sympy.Eq: 'eq', sympy.Gt: 'ineq', sympy.Ge: 'ineq', sympy.Ne: 'ineq', sympy.Lt: 'ineq', sympy.Le: 'ineq'
        }

        for key, constraint in enumerate(self.constraints):
            # jac = make_jac(c, p)
            cons.append({
                'type': types[constraint.constraint_type],
                # Assume the lhs is the equation.
                'fun': lambda p, x, c: c(*(list(x.values()) + list(p)))[0],
                # 'fun': lambda p, x, c: c.numerical_components[0](*(list(x.values()) + list(p))),
                # Assume the lhs is the equation.
                'jac' : lambda p, x, c: [component(*(list(x.values()) + list(p))) for component in c.numerical_jacobian[0]],
                'args': (self.data, constraint)
            })
        cons = tuple(cons)
        return cons

# class Minimize(BaseFit):
#     def __init__(self, model, xdata=None, ydata=None, constraints=None, *args, **kwargs):
#         """
#         :model: Model to minimize
#         :constraints: constraints the minimization is subject to
#         :xdata:
#         :ydata: data the minimization is subject to.
#         """
#         super(Minimize, self).__init__(model)
#         self.xdata = xdata if xdata is not None else np.array([])
#         self.ydata = ydata if ydata is not None else np.array([])
#         self.constraints = constraints if constraints else []
#
#     def error(self, p, func, x, y):
#         if x != np.array([]) and y != np.array([]):
#             return func(x, p) - y
#         else:
#             return func(x, p)
#
#     def get_initial_guesses(self):
#         return super(Minimize, self).get_initial_guesses()
#
#     def execute(self, method='SLSQP', *args, **kwargs):
#         ans = minimize(
#             self.error,
#             self.get_initial_guesses(),
#             args=(self.scipy_func, self.xdata, self.ydata),
#             method=method,
#             # method='L-BFGS-B',
#             bounds=self.get_bounds(),
#             constraints = self.get_constraints(),
#             jac=self.eval_jacobian,
#             options={'disp': True},
#         )
#
#         # Build infodic
#         infodic = {
#             'fvec': ans.fun,
#             'nfev': ans.nfev,
#         }
#         # s_sq = (infodic['fvec'] ** 2).sum() / (len(self.ydata) - len(popt))
#         # pcov = cov_x * s_sq if cov_x is not None else None
#         self.__fit_results = FitResults(
#             params=self.model.params,
#             popt=ans.x,
#             pcov=None,
#             infodic=infodic,
#             mesg=ans.message,
#             ier=ans.nit,
#             ydata=self.ydata,  # Needed to calculate R^2
#         )
#         return self.__fit_results
#
#     def get_constraints(self):
#         """
#             Turns self.constraints into a scipy compatible format.
#             :return: dict of scipy compatile statements.
#             """
#         from sympy import Eq, Gt, Ge, Ne, Lt, Le
#
#         cons = []
#         types = {
#             Eq: 'eq', Gt: 'ineq', Ge: 'ineq', Ne: 'ineq', Lt: 'ineq', Le: 'ineq'
#         }
#
#         def make_jac(constraint_lhs, p, x):
#             """
#             :param constraint_lhs: equation of a constraint. The lhs is assumed to be an eq, rhs a number.
#             :param p: current value of the parameters to be evaluated.
#             :return: numerical jacobian.
#             """
#             sym_jac = []
#             for param in self.model.params:
#                 sym_jac.append(sympy.diff(constraint_lhs, param))
#             ans = np.array(
#                 [sympy_to_scipy(jac, self.model.vars, self.model.params)(x, p) for jac in
#                  sym_jac]
#             )
#             return ans
#
#         for key, constraint in enumerate(self.constraints):
#             # jac = make_jac(c, p)
#             cons.append({
#                 'type': types[constraint.__class__],
#                 # Assume the lhs is the equation.
#                 'fun': lambda p, x, c: sympy_to_scipy(c.lhs, self.model.vars, self.model.params)(x, p),
#                 # Assume the lhs is the equation.
#                 'jac' : lambda p, x, c: make_jac(c.lhs, p, x),
#                 'args': (self.xdata, constraint)
#             })
#         cons = tuple(cons)
#         return cons



# class Maximize(Minimize):
#     def error(self, p, func, x, y):
#         """ Change the sign in order to maximize. """
#         return - super(Maximize, self).error(p, func, x, y)
#
#     def eval_jacobian(self, p, func, x, y):
#         """ Change the sign in order to maximize. """
#         return - super(Maximize, self).eval_jacobian(p, func, x, y)


[docs]class Maximize(Minimize):
    """
    Maximize a model subject to constraints.
    Simply flips the sign on error_func and eval_jacobian in order to maximize.
    """
    def error_func(self, p, data):
        return - super(Maximize, self).error_func(p, data)

    def eval_jacobian(self, p, data):
        return - super(Maximize, self).eval_jacobian(p, data)


[docs]class Likelihood(Maximize):
    """
    Fit using a Maximum-Likelihood approach.
    """
    # def __init__(self, model, *args, **kwargs):
    #     """
    #     :param model: sympy expression.
    #     :param x: xdata to fit to.  Nx1
    #     """
    #     super(Likelihood, self).__init__(model, *args, **kwargs)

    # def execute(self, method='SLSQP', *args, **kwargs):
    #     # super(Likelihood, self).execute(*args, **kwargs)
    #     ans = minimize(
    #         self.error,
    #         self.initial_guesses,
    #         args=(self.scipy_func, self.xdata, self.ydata),
    #         method=method,
    #         bounds=self.get_bounds(),
    #         constraints = self.get_constraints(),
    #         # jac=self.eval_jacobian, # If I find a meaning to jac I'll let you know.
    #         options={'disp': True},
    #     )
    #
    #     # Build infodic
    #     infodic = {
    #         'fvec': ans.fun,
    #         'nfev': ans.nfev,
    #     }
    #
    #
    #
    #     self.__fit_results = FitResults(
    #         params=self.model.params,
    #         popt=ans.x,
    #         pcov=None,
    #         infodic=infodic,
    #         mesg=ans.message,
    #         ier=ans.nit,
    #         ydata=self.ydata,  # Needed to calculate R^2
    #     )
    #     return self.__fit_results

[docs]    def error_func(self, p, data):
        """
        Error function to be maximised(!) in the case of likelihood fitting.

        :param p: guess params
        :param data: xdata
        :return: scalar value of log-likelihood
        """
        ans = - np.nansum(np.log(self.model(*(list(data) + list(p)))))
        return ans


[docs]    def eval_jacobian(self, p, data):
        """
        Jacobian for likelihood is defined as :math:`\\nabla_{\\vec{p}}( \\log( L(\\vec{p} | \\vec{x})))`.

        :param p: guess params
        :param data: data for the variables.
        :return: array of length number of ``Parameter``'s in the model, with all partial derivatives evaluated at p, data.
        """
        ans = []
        for row in self.model.numerical_jacobian:
            for partial_derivative in row:
                ans.append(
                    - np.nansum(
                        partial_derivative(*(list(data) + list(p))).flatten() / self.model(*(list(data) + list(p)))
                    )
                )
        else:
            return np.array(ans)

# class LagrangeMultipliers:
#     """
#     Class to analytically solve a function subject to constraints using Karush Kuhn Tucker.
#     http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions
#     """
#
#     def __init__(self, model, constraints):
#         self.model = model
#         # Seperate the constraints into equality and inequality constraint of the type <=.
#         self.equalities, self.lesser_thans = self.seperate_constraints(constraints)
#         self.model.vars, self.model.params = seperate_symbols(self.model)
#
#     @property
#     @cache
#     def lagrangian(self):
#         L = self.model
#
#         # Add equility constraints to the Lagrangian
#         for constraint, l_i in zip(self.equalities, self.l_params):
#             L += l_i * constraint
#
#         # Add inequility constraints to the Lagrangian
#         for constraint, u_i in zip(self.lesser_thans, self.u_params):
#             L += u_i * constraint
#
#         return L
#
#     @property
#     @cache
#     def l_params(self):
#         """
#         :return: Lagrange multipliers for every constraint.
#         """
#         return [Parameter(name='l_{}'.format(index)) for index in range(len(self.equalities))]
#
#     @property
#     @cache
#     def u_params(self):
#         """
#         :return: Lagrange multipliers for every inequality constraint.
#         """
#         return [Parameter(name='u_{}'.format(index)) for index in range(len(self.lesser_thans))]
#
#     @property
#     @cache
#     def all_params(self):
#         """
#         :return: All parameters. The convention is first the model parameters,
#         then lagrange multipliers for equality constraints, then inequility.
#         """
#         return self.model.params + self.l_params + self.u_params
#
#     @property
#     @cache
#     def extrema(self):
#         """
#         :return: list namedtuples of all extrema of self.model, where value = f(x1, ..., xn).
#         """
#         # Prepare the Extremum namedtuple for this number of variables.
#         field_names = [p.name for p in self.model.params] + ['value']
#         Extremum = namedtuple('Extremum', field_names)
#
#         # Calculate the function value at each solution.
#         values = [self.model.subs(sol) for sol in self.solutions]
#
#         # Build the output list of namedtuples
#         extrema_list = []
#         for value, solution in zip(values, self.solutions):
#             # Prepare an Extrumum tuple for every extremum.
#             ans = {'value': value}
#             for param in self.model.params:
#                 ans[param.name] = solution[param]
#             extrema_list.append(Extremum(**ans))
#         return extrema_list
#
#     @property
#     @cache
#     def solutions(self):
#         """
#         Do analytical optimization. This finds ALL solutions for the system.
#         Nomenclature: capital L is the Lagrangian, l the Lagrange multiplier.
#         :return: a list of dicts containing the values for all parameters,
#         including the Lagrange multipliers l_i and u_i.
#         """
#         # primal feasibility; pretend they are all equality constraints.
#         grad_L = [sympy.diff(self.lagrangian, p) for p in self.all_params]
#         solutions = sympy.solve(grad_L, self.all_params, dict=True)
#         print(grad_L, solutions, self.all_params)
#
#         if self.u_params:
#             # The smaller than constraints also have trivial solutions when u_i == 0.
#             # These are not automatically found by sympy in the previous process.
#             # Therefore we must now evaluate the gradient for these points manually.
#             u_zero = dict((u_i, 0) for u_i in self.u_params)
#             # We need to consider all combinations of u_i == 0 possible, of all lengths possible.
#             for number_of_zeros in range(1, len(u_zero) + 1):
#                 for zeros in itertools.combinations(u_zero.items(), number_of_zeros):  # zeros is a tuple of (Symbol, 0) tuples.
#                     # get a unique set of symbols.
#                     symbols = set(self.all_params) - set(symbol for symbol, _ in zeros)
#                     # differentiate w.r.t. these symbols only.
#                     relevant_grad_L = [sympy.diff(self.lagrangian, p) for p in symbols]
#
#                     solution = sympy.solve([grad.subs(zeros) for grad in relevant_grad_L], symbols, dict=True)
#                     for item in solution:
#                         item.update(zeros)  # include the zeros themselves.
#
#                     solutions += solution
#
#         return self.sanitise(solutions)
#
#     def sanitise(self, solutions):
#         """
#         Returns only solutions which are valid. This is an unfortunate consequence of the KKT method;
#         KKT parameters are not guaranteed to respect each other. However, it is easy to check this.
#         There are two things to check:
#         - all KKT parameters should be greater equal zero.
#         - all constraints should be met by the solutions.
#         :param solutions: a list of dicts, where each dict contains the coordinates of a saddle point of the lagrangian.
#         :return: bool
#         """
#         # All the inequality multipliers u_i must be greater or equal 0
#         final_solutions = []
#         for saddle_point in solutions:
#             for u_i in self.u_params:
#                 if saddle_point[u_i] < 0:
#                     break
#             else:
#                 final_solutions.append(saddle_point)
#
#         # we have to dubble check all if all our conditions are met because
#         # This is not garanteed with inequility constraints.
#         solutions = []
#         for solution in final_solutions:
#             for constraint in self.lesser_thans:
#                 test = constraint.subs(solution)
#                 if test > 0:
#                     break
#             else:
#                 solutions.append(solution)
#
#         return solutions
#
#
#
#     @staticmethod
#     def seperate_constraints(constraints):
#         """
#         We follow the definitions given here:
#         http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions
#
#         IMPORTANT: <= and < are considered the same! The same goes for > and >=.
#         Strict inequalities of the type != are not currently supported.
#
#         :param constraints list: list of constraints.
#         :return: g_i are <= 0 constraints, h_j are equals 0 constraints.
#         """
#         equalities = []
#         lesser_thans = []
#         for constraint in constraints:
#             if isinstance(constraint, sympy.Eq):
#                 equalities.append(constraint.lhs - constraint.rhs)
#             elif isinstance(constraint, (sympy.Le, sympy.Lt)):
#                 lesser_thans.append(constraint.lhs - constraint.rhs)
#             elif isinstance(constraint, (sympy.Ge, sympy.Gt)):
#                 lesser_thans.append(-1 * (constraint.lhs - constraint.rhs))
#             else:
#                 raise TypeError('Constraints of type {} are not supported by this solver.'.format(type(constraint)))
#         return equalities, lesser_thans
#
# class ConstrainedFit(BaseFit):
#     """
#     Finds the analytical best fit parameters, combining data with LagrangeMultipliers
#     for the best result, if available.
#     """
#     def __init__(self, model, x, y, constraints=None, *args, **kwargs):
#         constraints = constraints if constraints is not None else []
#         value = Variable()
#         chi2 = (model - value)**2
#         self.analytic_fit = LagrangeMultipliers(chi2, constraints)
#         self.xdata = x
#         self.ydata = y
#         super(ConstrainedFit, self).__init__(chi2)
#
#     def execute(self):
#         print('here:', self.analytic_fit.solutions)
#         import inspect
#         for extremum in self.analytic_fit.extrema:
#             popt, pcov  = [], []
#             for param in self.model.params:
#                 # Retrieve the expression for this param.
#                 expr = getattr(extremum, param.name)
#                 py_expr = sympy_to_py(expr, self.model.vars, [])
#                 values = py_expr(*self.xdata)
#                 popt.append(np.average(values))
#                 pcov.append(np.var(values, ddof=len(self.model.vars)))
#             print(popt, pcov)
#
#             residuals = self.scipy_func(self.xdata, popt)
#
#             fit_results = FitResults(
#                 params=self.model.params,
#                 popt=popt,
#                 pcov=pcov,
#                 infodic={},
#                 mesg='',
#                 ier=0,
#                 r_squared=r_squared(residuals, self.ydata),
#             )
#             print(fit_results)
#         print(self.analytic_fit.extrema)
#
#     def error(self, p, func, x, y):
#         pass



[docs]def r_squared(model, fit_result, data):
    """
    Calculates the coefficient of determination, R^2, for the fit.

    :param model: Model instance
    :param fit_result: FitResults instance
    :param data: data with which the fit was performed.
    """
    # First filter out the dependent vars
    y_is = [data[var.name] for var in model.dependent_vars if var.name in data]
    x_is = [value for key, value in data.items() if key in model.__signature__.parameters]
    # y_is = [value for key, value in data.items() if key in model.dependent_vars]
    y_bars = [np.mean(x) for x in y_is]
    f_is = model(*x_is, **fit_result.params)
    SS_res = np.sum([np.sum((y_i - f_i)**2) for y_i, f_i in zip(y_is, f_is)])
    SS_tot = np.sum([np.sum((y_i - y_bar)**2) for y_i, y_bar in zip(y_is, y_bars)])

    return 1 - SS_res/SS_tot

# def r_squared(residuals, ydata, sigma=None):
#     """
#     Calculate the squared regression coefficient from the given residuals and data.
#     :param residuals: array of residuals, f(x, p) - y.
#     :param ydata: y in the above equation.
#     :param sigma: sigma in the y_i
#     """
#     ss_err = np.sum(residuals ** 2)
#     if sigma is not None:
#         ss_tot = np.sum(((ydata - ydata.mean())/sigma) ** 2)
#     else:
#         ss_tot = np.sum((ydata - ydata.mean()) ** 2)
#
#     return 1 - (ss_err / ss_tot)
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