Source code for symfit.core.fit

from collections import namedtuple, Mapping, OrderedDict, Sequence
import copy
import sys
import warnings
from abc import abstractmethod

import sympy
from sympy.core.relational import Relational
import numpy as np
from scipy.optimize import minimize
from scipy.integrate import odeint

from symfit.core.argument import Parameter, Variable
from .support import (
    seperate_symbols, keywordonly, sympy_to_py, key2str, partial, cached_property
)
from .minimizers import (
    BFGS, SLSQP, LBFGSB, BaseMinimizer, GradientMinimizer, ConstrainedMinimizer,
    ScipyMinimize, MINPACK, ChainedMinimizer, BasinHopping
)
from .objectives import (
    LeastSquares, BaseObjective, MinimizeModel, VectorLeastSquares, LogLikelihood
)
from .fit_results import FitResults

if sys.version_info >= (3,0):
    import inspect as inspect_sig
else:
    import funcsigs as inspect_sig


[docs]class ModelError(Exception): """ Raised when a problem occurs with a model. """ pass
[docs]class BaseModel(Mapping): """ ABC for ``Model``'s. Makes sure models are iterable. Models can be initiated from Mappings or Iterables of Expressions, or from an expression directly. Expressions are not enforced for ducktyping purposes. """
[docs] def __init__(self, model): """ Initiate a Model from a dict:: a = Model({y: x**2}) Preferred way of initiating ``Model``, since now you know what the dependent variable is called. :param model: dict of ``Expr``, where dependent variables are the keys. """ if not isinstance(model, Mapping): try: iter(model) except TypeError: # Model is still a scalar model model = [model] # TODO: this will break upon deprecating the auto-generation of # names for Variables. At this time, a DummyVariable object # should be introduced to fulfill the same role. # Also, catching the warnings should then be removed, as this is # just to prevent the DeprecationWarning from appearing. with warnings.catch_warnings(): warnings.simplefilter("ignore") model = {Variable(): expr for expr in model} self._init_from_dict(model)
[docs] def __len__(self): """ :return: the number of dependent variables for this model. """ return len(self.model_dict)
[docs] def __getitem__(self, dependent_var): """ Returns the expression belonging to a given dependent variable. :param dependent_var: Instance of ``Variable`` :type dependent_var: ``Variable`` :return: The expression belonging to ``dependent_var`` """ return self.model_dict[dependent_var]
[docs] def __iter__(self): """ :return: iterable over self.model_dict """ return iter(self.model_dict)
[docs] def __eq__(self, other): """ ``Model``'s are considered equal when they have the same dependent variables, and the same expressions for those dependent variables. The same is defined here as passing sympy == for the vars themselves, and as expr1 - expr2 == 0 for the expressions. For more info check the `sympy docs <https://github.com/sympy/sympy/wiki/Faq>`_. :param other: Instance of ``Model``. :return: bool """ if len(self) is not len(other): return False else: for var_1, var_2 in zip(self, other): if var_1 != var_2: return False else: if not self[var_1].expand() == other[var_2].expand(): return False else: return True
[docs] def __neg__(self): """ :return: new model with opposite sign. Does not change the model in-place, but returns a new copy. """ new_model_dict = self.model_dict.copy() for key in new_model_dict: new_model_dict[key] *= -1 return self.__class__(new_model_dict)
def _init_from_dict(self, model_dict): """ Initiate self from a model_dict to make sure attributes such as vars, params are available. Creates lists of alphabetically sorted independent vars, dependent vars, sigma vars, and parameters. Finally it creates a signature for this model so it can be called nicely. This signature only contains independent vars and params, as one would expect. :param model_dict: dict of (dependent_var, expression) pairs. """ sort_func = lambda symbol: str(symbol) self.model_dict = OrderedDict(sorted(model_dict.items(), key=lambda i: sort_func(i[0]))) self.dependent_vars = sorted(model_dict.keys(), key=sort_func) # Extract all the params and vars as a sorted, unique list. expressions = model_dict.values() _params, self.independent_vars = set([]), set([]) for expression in expressions: vars, params = seperate_symbols(expression) _params.update(params) self.independent_vars.update(vars) # Although unique now, params and vars should be sorted alphabetically to prevent ambiguity self.params = sorted(_params, key=sort_func) self.independent_vars = sorted(self.independent_vars, key=sort_func) # Make Variable object corresponding to each var. self.sigmas = {var: Variable(name='sigma_{}'.format(var.name)) for var in self.dependent_vars} @cached_property def vars(self): """ :return: Returns a list of dependent, independent and sigma variables, in that order. """ return self.independent_vars + self.dependent_vars + [self.sigmas[var] for var in self.dependent_vars] @property def bounds(self): """ :return: List of tuples of all bounds on parameters. """ bounds = [] for p in self.params: if p.fixed: if p.value >= 0.0: bounds.append([np.nextafter(p.value, 0), p.value]) else: bounds.append([p.value, np.nextafter(p.value, 0)]) else: bounds.append([p.min, p.max]) return bounds @property def shared_parameters(self): """ :return: bool, indicating if parameters are shared between the vector components of this model. """ if len(self) == 1: # Not a vector return False else: params_thusfar = [] for component in self.values(): vars, params = seperate_symbols(component) if set(params).intersection(set(params_thusfar)): return True else: params_thusfar += params else: return False
[docs] def __str__(self): """ Printable representation of a Mapping model. :return: str """ template = "{}({}; {}) = {}" parts = [] for var, expr in self.items(): parts.append(template.format( var, ", ".join(arg.name for arg in self.independent_vars), ", ".join(arg.name for arg in self.params), expr ) ) return "\n".join(parts)
def __getstate__(self): # Remove cached_property values from the state, they need to be # re-calculated after pickle. state = self.__dict__.copy() for key in self.__dict__: if key.startswith(cached_property.base_str): del state[key] return state
[docs] def __reduce__(self): return (self.__class__, (self.model_dict,))
[docs]class BaseNumericalModel(BaseModel): """ ABC for Numerical Models. These are models whose components are generic python callables. """
[docs] def __init__(self, model, independent_vars, params): """ :param model: dict of ``callable``, where dependent variables are the keys. If instead of a dict a (sequence of) ``callable`` is provided, it will be turned into a dict automatically. :param independent_vars: The independent variables of the model. :param params: The parameters of the model. """ self.independent_vars = sorted(independent_vars, key=str) self.params = sorted(params, key=str) super(BaseNumericalModel, self).__init__(model)
def _init_from_dict(self, model_dict): """ Initiate self from a model_dict which has python callables as its values. This init makes sure self.dependent_vars is available, the other are set in __init__. :param model_dict: dict of (dependent_var, callable) pairs. """ sort_func = lambda symbol: str(symbol) self.model_dict = OrderedDict(sorted(model_dict.items(), key=lambda i: sort_func(i[0]))) self.dependent_vars = sorted(model_dict.keys(), key=sort_func) # Make Variable object corresponding to each var. self.sigmas = {var: Variable(name='sigma_{}'.format(var.name)) for var in self.dependent_vars}
[docs] def __eq__(self, other): raise NotImplementedError( 'Equality checking for {} is ambiguous.'.format(self.__class__.__name__) )
[docs] def __neg__(self): """ :return: new model with opposite sign. Does not change the model in-place, but returns a new copy. """ new_model_dict = {} for key, callable_expr in self.model_dict.values(): new_model_dict[key] = lambda *args, **kwargs: - callable_expr(*args, **kwargs) return self.__class__(new_model_dict)
@property def shared_parameters(self): raise NotImplementedError( 'Shared parameters can not be inferred for {}'.format(self.__class__.__name__) )
[docs] def __reduce__(self): return ( self.__class__, (self.model_dict, self.independent_vars, self.params) )
[docs]class BaseCallableModel(BaseModel): """ Baseclass for callable models. """
[docs] def eval_components(self, *args, **kwargs): """ :return: lambda functions of each of the components in model_dict, to be used in numerical calculation. """ return [expr(*args, **kwargs) for expr in self.numerical_components]
[docs] @abstractmethod def numerical_components(self): """ :return: A list of callables corresponding to each of the components of the model. """
def _make_signature(self): # Handle args and kwargs according to the allowed names. parameters = [ # Note that these are inspect_sig.Parameter's, not symfit parameters! inspect_sig.Parameter(arg.name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD) for arg in self.independent_vars + self.params ] return inspect_sig.Signature(parameters=parameters) def _init_from_dict(self, model_dict): super(BaseCallableModel, self)._init_from_dict(model_dict) self.__signature__ = self._make_signature()
[docs] def __call__(self, *args, **kwargs): """ Evaluate the model for a certain value of the independent vars and parameters. Signature for this function contains independent vars and parameters, NOT dependent and sigma vars. Can be called with both ordered and named parameters. Order is independent vars first, then parameters. Alphabetical order within each group. :param args: :param kwargs: :return: A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple, even for scalar valued functions. This is done for consistency. """ bound_arguments = self.__signature__.bind(*args, **kwargs) Ans = namedtuple('Ans', [var.name for var in self]) return Ans(*self.eval_components(**bound_arguments.arguments))
[docs] @keywordonly(dx=1e-8) def finite_difference(self, *args, **kwargs): """ Calculates a numerical approximation of the Jacobian of the model using the sixth order central finite difference method. Accepts a `dx` keyword to tune the relative stepsize used. Makes 6*n_params calls to the model. :return: A numerical approximation of the Jacobian of the model as a list with length n_components containing numpy arrays of shape (n_params, n_datapoints) """ # See also: scipy.misc.derivative. It might be convinced to work, but # it will make way too many function evaluations dx = kwargs.pop('dx') bound_arguments = self.__signature__.bind(*args, **kwargs) var_vals = [bound_arguments.arguments[var.name] for var in self.independent_vars] param_vals = [bound_arguments.arguments[param.name] for param in self.params] param_vals = np.array(param_vals, dtype=float) f = partial(self, *var_vals) # See also: scipy.misc.central_diff_weights factors = np.array((3/2., -3/5., 1/10.)) orders = np.arange(1, len(factors) + 1) out = [] # TODO: Dark numpy magic. Needs an extra dimension in out, and a sum # over the right axis at the end. # We can't make the output arrays yet, since we don't know the size of # the components. So put a sentinel value. out = None for param_idx, param_val in enumerate(param_vals): for order, factor in zip(orders, factors): h = np.zeros(len(self.params)) # Note: stepsize (h) depends on the parameter values... h[param_idx] = dx * order if abs(param_val) >= 1e-7: # ...but it'd better not be (too close to) 0. h[param_idx] *= param_val up = f(*(param_vals + h)) down = f(*(param_vals - h)) if out is None: # Initialize output arrays. Now that we evaluated f, we # know the size of our data. out = [] # out is a list of length Ncomponents with numpy arrays of # shape (Nparams, Ndata). Part of our misery comes from the # fact that the length of the data may be different for all # the components. Numpy doesn't like ragged arrays, so make # a list of arrays. for comp_idx in range(len(self)): try: len(up[comp_idx]) except TypeError: # output[comp_idx] is a number data_shape = (1,) else: data_shape = up[comp_idx].shape # Initialize at 0 so we can += all the contributions param_grad = np.zeros([len(self.params)] + list(data_shape), dtype=float) out.append(param_grad) for comp_idx in range(len(self)): diff = up[comp_idx] - down[comp_idx] out[comp_idx][param_idx, :] += factor * diff / (2 * h[param_idx]) return out
[docs] def eval_jacobian(self, *args, **kwargs): """ :return: The jacobian matrix of the function. """ return self.finite_difference(*args, **kwargs)
[docs]class CallableNumericalModel(BaseCallableModel, BaseNumericalModel): """ Callable model, whose components are callables provided by the user. This allows the user to provide the components directly. Example:: x, y = variables('x, y') a, b = parameters('a, b') numerical_model = CallableNumericalModel( {y: lambda x, a, b: a * x + b}, independent_vars=[x], params=[a, b] ) This is identical in functionality to the more traditional:: x, y = variables('x, y') a, b = parameters('a, b') model = CallableModel({y: a * x + b}) but allows power-users a lot more freedom while still interacting seamlessly with the :mod:`symfit` API. .. note:: All of the callables must accept all of the ``independent_vars`` and ``params`` of the model as arguments, even if not all of them are used by every callable. """ @cached_property def numerical_components(self): return [expr if not isinstance(expr, sympy.Expr) else sympy_to_py(expr, self.independent_vars, self.params) for expr in self.values()]
[docs]class CallableModel(BaseCallableModel): """ Defines a callable model. The usual rules apply to the ordering of the arguments: * first independent variables, then dependent variables, then parameters. * within each of these groups they are ordered alphabetically. """ @cached_property def numerical_components(self): """ :return: lambda functions of each of the analytical components in model_dict, to be used in numerical calculation. """ return [sympy_to_py(expr, self.independent_vars, self.params) for expr in self.values()]
[docs]class Model(CallableModel): """ Model represents a symbolic function and all it's derived properties such as sum of squares, jacobian etc. Models can be initiated from several objects:: a = Model({y: x**2}) b = Model(y=x**2) Models are callable. The usual rules apply to the ordering of the arguments: * first independent variables, then dependent variables, then parameters. * within each of these groups they are ordered alphabetically. Models are also iterable, behaving as their internal model_dict. In the example above, a[y] returns x**2, len(a) == 1, y in a == True, etc. """ @property def jacobian(self): """ :return: Jacobian 'Matrix' filled with the symbolic expressions for all the partial derivatives. Partial derivatives are of the components of the function with respect to the Parameter's, not the independent Variable's. """ return [[sympy.diff(expr, param) for param in self.params] for expr in self.values()] @property def chi_squared(self): """ :return: Symbolic :math:`\\chi^2` """ return sum(((f - y)/self.sigmas[y])**2 for y, f in self.items()) @property def chi(self): """ :return: Symbolic Square root of :math:`\\chi^2`. Required for MINPACK optimization only. Denoted as :math:`\\sqrt(\\chi^2)` """ return sympy.sqrt(self.chi_squared) @property def chi_jacobian(self): """ Return a symbolic jacobian of the :math:`\\sqrt(\\chi^2)` function. Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector! This is because that's what leastsq needs. """ jac = [] for param in self.params: # Differentiate to every param f = sympy.diff(self.chi, param) jac.append(f) return jac @property def chi_squared_jacobian(self): """ Return a symbolic jacobian of the :math:`\\chi^2` function. Vector of derivatives w.r.t. each parameter. Not a Matrix but a vector! """ jac = [] for param in self.params: # Differentiate to every param f = sympy.diff(self.chi_squared, param) jac.append(f) return jac # @property # def ss_res(self): # """ # :return: Residual sum of squares. Similar to chi_squared, but without considering weights. # """ # return sum((y - f)**2 for y, f in self.items()) @cached_property def numerical_jacobian(self): """ :return: lambda functions of the jacobian matrix of the function, which can be used in numerical optimization. """ return [[sympy_to_py(partial_dv, self.independent_vars, self.params) for partial_dv in row] for row in self.jacobian] @cached_property def numerical_chi_squared(self): """ :return: lambda function of the ``.chi_squared`` method, to be used in numerical optimisation. """ return sympy_to_py(self.chi_squared, self.vars, self.params) @cached_property def numerical_chi(self): """ :return: lambda function of the ``.chi`` method, to be used in MINPACK optimisation. """ return sympy_to_py(self.chi, self.vars, self.params) @cached_property def numerical_chi_jacobian(self): """ :return: lambda functions of the jacobian of the ``.chi`` method, which can be used in numerical optimization. """ return [sympy_to_py(component, self.vars, self.params) for component in self.chi_jacobian] @cached_property def numerical_chi_squared_jacobian(self): """ :return: lambda functions of the jacobian of the ``.chi_squared`` method. """ return [sympy_to_py(component, self.vars, self.params) for component in self.chi_squared_jacobian]
[docs] def eval_jacobian(self, *args, **kwargs): """ :return: Jacobian evaluated at the specified point. """ # Evaluate the jacobian at specified points jac = [ [partial_dv(*args, **kwargs) for partial_dv in row ] for row in self.numerical_jacobian ] for idx, comp in enumerate(jac): # Find out how many datapoints this component has. We need to do # this with a try/except, since partial_derivative can be a number or # a sequence. We ultimately want to make sure every evey component # has this size, so component of the jacobian can be contracted properly. data_len = 1 for partial_derivative in comp: if hasattr(partial_derivative, 'shape') and partial_derivative.shape: # Last line is to descriminate against numpy.float of shape (,) shape = partial_derivative.shape else: try: shape = len(partial_derivative) except TypeError: # Not iterable, so assume number shape = 1 if isinstance(shape, tuple): if isinstance(data_len, tuple): if len(shape) > len(data_len): data_len = shape else: data_len = shape elif isinstance(data_len, tuple): # data_len is a tuple, but shape isn't. Prefer the tuple. pass else: data_len = max(shape, data_len) # And make everything in this component the same size, since some are # numbers. for jdx, partial_derivative in enumerate(comp): # This is a no-op for elements of size `longest`. jac[idx][jdx] = np.ones(data_len) * partial_derivative # And lastly, turn jac into a list of 2D numpy arrays of shape # (Nparams, Ndata) jac[idx] = np.array(jac[idx], dtype=float) return jac
[docs]class TaylorModel(Model): """ A first-order Taylor expansion of a model around given parameter values (:math:`p_0`). Is used by NonLinearLeastSquares. Currently only a first order expansion is implemented. """
[docs] def __init__(self, model): """ Make a first order Taylor expansion of ``model``. :param model: Instance of ``Model`` """ params_0 = OrderedDict( [(p, Parameter(name='{}_0'.format(p.name))) for p in model.params] ) model_dict = {} for (var, component), jacobian_vec in zip(model.items(), model.jacobian): linear = component.subs(params_0.items()) for (p, p0), jac in zip(params_0.items(), jacobian_vec): # params_0 is assumed OrderedDict! linear += jac.subs(params_0.items()) * (p - p0) model_dict[var] = linear self.params_0 = params_0 super(TaylorModel, self).__init__(model_dict) # super(TaylorModel, self).__init__(**key2str(model_dict)) self.model_dict_orig = copy.copy(self.model_dict)
@property def params(self): """ params returns only the `free` parameters. Strictly speaking, the expression for a ``TaylorModel`` contains both the parameters :math:`\\vec{p}` and :math:`\\vec{p_0}` around which to expand, but params should only give :math:`\\vec{p}`. To get a mapping to the :math:`\\vec{p_0}`, use ``.params_0``. """ return [p for p in self._params if p not in self.params_0.values()] @params.setter def params(self, items): self._params = items @property def p0(self): """ Property of the :math:`p_0` around which to expand. Should be set by the names of the parameters themselves. Example:: a = Parameter() x, y = variables('x, y') model = TaylorModel({y: sin(a * x)}) model.p0 = {a: 0.0} """ return self._p0 @p0.setter def p0(self, expand_at): self._p0 = {self.params_0[p]: float(value) for p, value in expand_at.items()} for var in self.model_dict_orig: self.model_dict[var] = self.model_dict_orig[var].subs(self.p0.items())
[docs] def __str__(self): """ When printing a TaylorModel, the point around which the expansion took place is included. For example, a Taylor expansion of {y: sin(w * x)} at w = 0 would be printed as:: @{w: 0.0} -> y(x; w) = w*x """ sup = super(TaylorModel, self).__str__() return '@{} -> {}'.format(self.p0, sup)
[docs]class Constraint(Model): """ Constraints are a special type of model in that they have a type: >=, == etc. They are made to have lhs - rhs == 0 of the original expression. For example, Eq(y + x, 4) -> Eq(y + x - 4, 0) Since a constraint belongs to a certain model, it has to be initiated with knowledge of it's parent model. This is important because all ``numerical_`` methods are done w.r.t. the parameters and variables of the parent model, not the constraint! This is because the constraint might not have all the parameter or variables that the model has, but in order to compute for example the Jacobian we still want to derive w.r.t. all the parameters, not just those present in the constraint. """
[docs] def __init__(self, constraint, model): """ :param constraint: constraint that model should be subjected to. :param model: A constraint is always tied to a model. """ if isinstance(constraint, Relational): self.constraint_type = type(constraint) if isinstance(model, BaseModel): self.model = model else: raise TypeError('The model argument must be of type Model.') super(Constraint, self).__init__(constraint.lhs - constraint.rhs) else: raise TypeError('Constraints have to be initiated with a subclass of sympy.Relational')
[docs] def __neg__(self): """ :return: new model with opposite sign. Does not change the model in-place, but returns a new copy. """ new_constraint = self.constraint_type( - self.model_dict[self.dependent_vars[0]]) return self.__class__(new_constraint, self.model)
@property def jacobian(self): """ :return: Jacobian 'Matrix' filled with the symbolic expressions for all the partial derivatives. Partial derivatives are of the components of the function with respect to the Parameter's, not the independent Variable's. """ return [[sympy.diff(expr, param) for param in self.model.params] for expr in self.values()] @cached_property def numerical_components(self): """ :return: lambda functions of each of the components in model_dict, to be used in numerical calculation. """ return [sympy_to_py(expr, self.model.vars, self.model.params) for expr in self.values()] @cached_property def numerical_jacobian(self): """ :return: lambda functions of the jacobian matrix of the function, which can be used in numerical optimization. """ return [[sympy_to_py(partial_dv, self.model.vars, self.model.params) for partial_dv in row] for row in self.jacobian] def _make_signature(self): # Handle args and kwargs according to the allowed names. parameters = [ # Note that these are inspect_sig.Parameter's, not symfit parameters! inspect_sig.Parameter(arg.name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD) for arg in self.model.vars + self.model.params ] return inspect_sig.Signature(parameters=parameters)
[docs] def __reduce__(self): return ( self.__class__, (self.constraint_type(list(self.values())[0], 0), self.model) )
[docs]class TakesData(object): """ An base class for everything that takes data. Most importantly, it takes care of linking the provided data to variables. The allowed variables are extracted from the model. """
[docs] @keywordonly(absolute_sigma=None) def __init__(self, model, *ordered_data, **named_data): """ :param model: (dict of) sympy expression or ``Model`` object. :param bool absolute_sigma: True by default. If the sigma is only used for relative weights in your problem, you could consider setting it to False, but if your sigma are measurement errors, keep it at True. Note that curve_fit has this set to False by default, which is wrong in experimental science. :param ordered_data: data for dependent, independent and sigma variables. Assigned in the following order: independent vars are assigned first, then dependent vars, then sigma's in dependent vars. Within each group they are assigned in alphabetical order. :param named_data: assign dependent, independent and sigma variables data by name. Standard deviation can be provided to any variable. They have to be prefixed with sigma\_. For example, let x be a Variable. Then sigma_x will give the stdev in x. """ absolute_sigma = named_data.pop('absolute_sigma') if isinstance(model, BaseModel): self.model = model else: self.model = Model(model) # Handle ordered_data and named_data according to the allowed names. var_names = [var.name for var in self.model.vars] parameters = [ # Note that these are inspect_sig.Parameter's, not symfit parameters! # inspect_sig.Parameter(name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD, default=1 if name.startswith('sigma_') else None) inspect_sig.Parameter(name, inspect_sig.Parameter.POSITIONAL_OR_KEYWORD, default=None) for name in var_names ] signature = inspect_sig.Signature(parameters=parameters) try: bound_arguments = signature.bind(*ordered_data, **named_data) except TypeError as err: for var in self.model.vars: if var.name.startswith(Variable._argument_name): raise type(err)(str(err) + '. Some of your Variable\'s are unnamed. That might be the cause of this Error: make sure you use e.g. x = Variable(\'x\')') else: raise err # Include default values in bound_argument object for param in signature.parameters.values(): if param.name not in bound_arguments.arguments: bound_arguments.arguments[param.name] = param.default original_data = bound_arguments.arguments # ordereddict of the data self.data = OrderedDict((var, original_data[var.name]) for var in self.model.vars) # Change the type to array if no array operations are supported. # We don't want to break duck-typing, hence the try-except. for var, dataset in self.data.items(): try: dataset**2 except TypeError: if dataset is not None: self.data[var] = np.array(dataset) self.sigmas_provided = any(value is not None for value in self.sigma_data.values()) # Replace sigmas that are constant by an array of that constant for var, sigma in self.model.sigmas.items(): try: iter(self.data[sigma]) except TypeError: if self.data[var] is None and self.data[sigma] is None: if len(self.data_shapes[1]) == 1: # The shape of the dependent vars is unique across dependent vars. # This means we can just assume this shape. self.data[sigma] = np.ones(self.data_shapes[1][0]) else: pass # No stdevs can be calculated if self.data[var] is not None and self.data[sigma] is None: self.data[sigma] = np.ones(self.data[var].shape) elif self.data[var] is not None: self.data[sigma] *= np.ones(self.data[var].shape) # If user gives a preference, use that. Otherwise, use True if at least one sigma is # given, False if no sigma is given. if absolute_sigma is not None: self.absolute_sigma = absolute_sigma else: for sigma in self.sigma_data: # Check if the user provided sigmas in the original data. # If so, interpret sigmas as measurement errors if original_data[sigma.name] is not None: self.absolute_sigma = True break else: self.absolute_sigma = False
@property def dependent_data(self): """ Read-only Property :return: Data belonging to each dependent variable as a dict with variable names as key, data as value. :rtype: collections.OrderedDict """ return OrderedDict((var, self.data[var]) for var in self.model) @property def independent_data(self): """ Read-only Property :return: Data belonging to each independent variable as a dict with variable names as key, data as value. :rtype: collections.OrderedDict """ return OrderedDict((var, self.data[var]) for var in self.model.independent_vars) @property def sigma_data(self): """ Read-only Property :return: Data belonging to each sigma variable as a dict with variable names as key, data as value. :rtype: collections.OrderedDict """ sigmas = self.model.sigmas return OrderedDict((sigmas[var], self.data[sigmas[var]]) for var in self.model) @property def data_shapes(self): """ Returns the shape of the data. In most cases this will be the same for all variables of the same type, if not this raises an Exception. Ignores variables which are set to None by design so we know that those None variables can be assumed to have the same shape as the other in calculations where this is needed, such as the covariance matrix. :return: Tuple of all independent var shapes, dependent var shapes. """ independent_shapes = [] for var, data in self.independent_data.items(): if data is not None: independent_shapes.append(data.shape) dependent_shapes = [] for var, data in self.dependent_data.items(): if data is not None: dependent_shapes.append(data.shape) return list(set(independent_shapes)), list(set(independent_shapes)) @property def initial_guesses(self): """ :return: Initial guesses for every parameter. """ return np.array([param.value for param in self.model.params])
[docs]class BaseFit(TakesData): """ Abstract base class for all fitting objects. """
[docs] def execute(self, *args, **kwargs): """ Every fit object has to define an execute method. Any * and ** arguments will be passed to the fitting module that is being wrapped, e.g. leastsq. :args kwargs: :return: Instance of FitResults """ raise NotImplementedError('Every subclass of BaseFit must have an execute method.')
[docs] def error_func(self, *args, **kwargs): """ Every fit object has to define an error_func method, giving the function to be minimized. """ raise NotImplementedError('Every subclass of BaseFit must have an error_func method.')
[docs] def eval_jacobian(self, *args, **kwargs): """ Every fit object has to define an eval_jacobian method, giving the jacobian of the function to be minimized. """ raise NotImplementedError('Every subclass of BaseFit must have an eval_jacobian method.')
[docs]class HasCovarianceMatrix(TakesData): """ Mixin class for calculating the covariance matrix for any model that has a well-defined Jacobian :math:`J`. The covariance is then approximated as :math:`J^T W J`, where W contains the weights of each data point. Supports vector valued models, but is unable to estimate covariances for those, just variances. Therefore, take the result with a grain of salt for vector models. """
[docs] def covariance_matrix(self, best_fit_params): """ Given best fit parameters, this function finds the covariance matrix. This matrix gives the (co)variance in the parameters. :param best_fit_params: ``dict`` of best fit parameters as given by .best_fit_params() :return: covariance matrix. """ if not hasattr(self.model, 'eval_jacobian'): return None if any(element is None for element in self.sigma_data.values()): # If one of the sigma's was explicitly set to None, we are unable # to determine the covariances. return np.array( [[float('nan') for p in self.model.params] for p in self.model.params] ) if isinstance(self.objective, LogLikelihood): # Loglikelihood is a special case that needs to be considered # separately, see #138 jac = self.objective.eval_jacobian(apply_func=lambda x: x, **key2str(best_fit_params)) cov_matrix_inv = np.tensordot(jac, jac, (range(1, jac.ndim), range(1, jac.ndim))) cov_mat = np.linalg.inv(cov_matrix_inv) return cov_mat try: if len(set(arr.shape for arr in self.sigma_data.values())) == 1: # Shapes of all sigma data identical return self._cov_mat_equal_lenghts(best_fit_params=best_fit_params) else: return self._cov_mat_unequal_lenghts(best_fit_params=best_fit_params) except np.linalg.LinAlgError: return None
def _reduced_residual_ss(self, best_fit_params, flatten=False): """ Calculate the residual Sum of Squares divided by the d.o.f.. :param best_fit_params: ``dict`` of best fit parameters as given by .best_fit_params() :param flatten: when `True`, return the total sum of squares (SS). If `False`, return the componentwise SS. :return: The reduced residual sum of squares. """ # popt = [best_fit_params[p.name] for p in self.model.params] # Rescale the covariance matrix with the residual variance if isinstance(self.objective, (VectorLeastSquares, LeastSquares)): ss_res = self.objective(flatten_components=flatten, **key2str(best_fit_params)) else: ss_res = self.objective(**key2str(best_fit_params)) if isinstance(self.objective, VectorLeastSquares): ss_res = np.sum(ss_res**2) degrees_of_freedom = 0 if flatten else [] for data in self.dependent_data.values(): if flatten: if data is not None: degrees_of_freedom += np.product(data.shape) else: if data is not None: degrees_of_freedom.append(np.product(data.shape)) # degrees_of_freedom = np.product(data.shape) - len(popt) # break else: # the correspoding component in ss_res will be 0 so it is ok to add any non-zero number. degrees_of_freedom.append(len(best_fit_params) + 1) degrees_of_freedom = np.array(degrees_of_freedom) s_sq = ss_res / (degrees_of_freedom - len(best_fit_params)) # s_sq = ss_res / degrees_of_freedom return s_sq def _cov_mat_equal_lenghts(self, best_fit_params): """ If all the data arrays are of equal size, use this method. This will typically be the case, and this method is a lot faster because it allows for numpy magic. :param best_fit_params: ``dict`` of best fit parameters as given by .best_fit_params() """ # Stack in a new dimension, and make this the first dim upon indexing. sigma = np.concatenate([arr[np.newaxis, ...] for arr in self.sigma_data.values()], axis=0) # Weight matrix. Since it should be a diagonal matrix, we just remember # this and multiply it elementwise for efficiency. # It is also rescaled by the reduced residual ss in case of absolute_sigma==False if self.absolute_sigma: W = 1/sigma**2 else: s_sq = self._reduced_residual_ss(best_fit_params, flatten=False) W = 1/sigma**2/s_sq[:, np.newaxis] kwargs = key2str(best_fit_params) kwargs.update(key2str(self.independent_data)) jac = np.array(self.model.eval_jacobian(**kwargs)) # Drop the axis which correspond to dependent vars which have been # set to None mask = [data is not None for data in self.dependent_data.values()] jac = jac[mask] W = W[mask] # Order jacobian as param, component, datapoint jac = np.swapaxes(jac, 0, 1) if not self.independent_data: jac = jac * np.ones_like(W) # Dot away all but the parameter dimension! try: cov_matrix_inv = np.tensordot(W*jac, jac, (range(1, jac.ndim), range(1, jac.ndim))) except ValueError as err: # If this fails because the shape of the jacobian could not be # properly estimated, then we remedy this. If not, the error is reraised. if jac.shape[-1] == 1: # Take the shape of the dependent data dependent_shape = self.data_shapes[1][0] # repeat the object along the last axis to match the shape new_jac = np.repeat(jac, np.product(dependent_shape), -1) jac = new_jac.reshape((jac.shape[0], jac.shape[1]) + dependent_shape) cov_matrix_inv = np.tensordot(W * jac, jac, (range(1, jac.ndim), range(1, jac.ndim))) else: raise err cov_matrix = np.linalg.inv(cov_matrix_inv) return cov_matrix def _cov_mat_unequal_lenghts(self, best_fit_params): """ If the data arrays are of unequal size, use this method. Less efficient but more general than the method for equal size datasets. """ sigma = list(self.sigma_data.values()) # Weight matrix. Since it should be a diagonal matrix, we just remember # this and multiply it elementwise for efficiency. if self.absolute_sigma: W = [1/s**2 for s in sigma] else: s_sq = self._reduced_residual_ss(best_fit_params, flatten=False) # W = 1/sigma**2/s_sq[:, np.newaxis] W = [1/s**2/res for s, res in zip(sigma, s_sq)] kwargs = key2str(best_fit_params) kwargs.update(key2str(self.independent_data)) jac = self.model.eval_jacobian(**kwargs) data_len = max(j.shape[1] for j in jac) data_len = max(data_len, max(len(w) for w in W)) W_full = np.zeros((len(W), data_len), dtype=float) jac_full = np.zeros((len(jac), jac[0].shape[0], data_len), dtype=float) for idx, (j, w) in enumerate(zip(jac, W)): if not self.independent_data: j = j * np.ones_like(w) jac_full[idx, :, :j.shape[1]] = j W_full[idx, :len(w)] = w jac = jac_full W = W_full # Order jacobian as param, component, datapoint jac = np.swapaxes(jac, 0, 1) # Weigh each component with its respective weight. # jac_weighed = [[j * w for j, w in zip(row, W)] for row in jac] # Buil the inverse cov_matrix. cov_matrix_inv = [] cov_matrix_inv = np.tensordot(W*jac, jac, (range(1, jac.ndim), range(1, jac.ndim))) cov_matrix = np.linalg.inv(cov_matrix_inv) # # iterate along the parameters first # for index, jac_w_p in enumerate(jac_weighed): # cov_matrix_inv.append([]) # for jac_p in jac: # # Now we have to dot product these guys properly. # dot = np.sum([np.sum(a * b) for a, b in zip(jac_w_p, jac_p)]) # cov_matrix_inv[index].append(dot) # # cov_matrix = np.linalg.inv(cov_matrix_inv) return cov_matrix
[docs]class LinearLeastSquares(BaseFit): """ Experimental. Solves the linear least squares problem analytically. Involves no iterations or approximations, and therefore gives the best possible fit to the data. The ``Model`` provided has to be linear. Currently, since this object still has to mature, it suffers from the following limitations: * It does not check if the model can be linearized by a simple substitution. For example, exp(a * x) -> b * exp(x). You will have to do this manually. * Does not use bounds or guesses on the ``Parameter``'s. Then again, it doesn't have to, since you have an exact solution. No guesses required. * It only works with scalar functions. This is strictly enforced. .. _Blobel: http://www.desy.de/~blobel/blobel_leastsq.pdf .. _Wiki: https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics) """
[docs] def __init__(self, *args, **kwargs): """ :raises: ``ModelError`` in case of a non-linear model or when a vector valued function is provided. """ super(LinearLeastSquares, self).__init__(*args, **kwargs) if not self.is_linear(self.model): raise ModelError('This Model is non-linear. Please use NonLinearLeastSquares instead.') elif len(self.model) > 1: raise ModelError('Currently only scalar valued functions are supported.')
[docs] @staticmethod def is_linear(model): """ Test whether model is of linear form in it's parameters. Currently this function does not recognize if a model can be considered linear by a simple substitution, such as exp(k x) = k' exp(x). .. _Wiki: https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics) :param model: ``Model`` instance :return: True or False """ terms = {} for var, expr in model.items(): terms.update(sympy.collect(sympy.expand(expr), model.params, evaluate=False)) difference = set(terms.keys()) ^ set(model.params) # Symmetric difference return not difference or difference == {1} # Either no difference or it still contains O(1) terms
[docs] def best_fit_params(self): """ Fits to the data and returns the best fit parameters. :return: dict containing parameters and their best-fit values. """ terms_per_component = [] for expr in self.model.chi_squared_jacobian: # Collect terms linear in the parameters. Returns a dict with parameters and # their prefactor as function of variables. Includes O(1) terms = sympy.collect(sympy.expand(expr), self.model.params, evaluate=False) # Evaluate every term separately and 'sum out' the variables. This results in # a system that is very easy to solve. for param in terms: terms[param] = np.sum(terms[param](**key2str(self.data))) terms_per_component.append(terms) # Reconstruct the linear system. system = [sum(factor*param for param, factor in terms.items()) for terms in terms_per_component] sol = sympy.solve(system, self.model.params, dict=True) try: assert len(sol) == 1 # Future Homer should think about what to do with multiple/no solutions except AssertionError: raise Exception('Got an unexpected number of solutions:', len(sol)) return sol[0] # Dict of param: value pairs.
[docs] def covariance_matrix(self, best_fit_params): """ Given best fit parameters, this function finds the covariance matrix. This matrix gives the (co)variance in the parameters. :param best_fit_params: ``dict`` of best fit parameters as given by .best_fit_params() :return: covariance matrix. """ # The rest of this method is concerned with determining the covariance matrix # Weight matrix. Diagonal matrix for now. sigma = list(self.sigma_data.values())[0] W = np.diag(1/sigma.flatten()**2) # Calculate the covariance matrix from the Jacobian X @ best_params. # In X, we do NOT sum over the components by design. This is because # it has to be contracted with W, the weight matrix. kwargs = {p.name: float(value) for p, value in best_fit_params.items()} kwargs.update(self.independent_data) # kwargs.update(self.data) X = np.atleast_2d([ (np.ones(sigma.shape[0]) * comp(**key2str(kwargs))).flatten() for comp in self.model.numerical_jacobian[0] ]) cov_matrix = np.linalg.inv(X.dot(W).dot(X.T)) if not self.absolute_sigma: kwargs.update(self.data) # Sum of squared residuals. To be honest, I'm not sure why ss_res does not give the # right result but by using the chi_squared the results are compatible with curve_fit. S = np.sum(self.model.chi_squared(**key2str(kwargs)), dtype=float) / (len(W) - len(self.model.params)) cov_matrix *= S return cov_matrix
[docs] def execute(self): """ Execute an analytical (Linear) Least Squares Fit. This object works by symbolically solving when :math:`\\nabla \\chi^2 = 0`. To perform this task the expression of :math:`\\nabla \\chi^2` is determined, ignoring that :math:`\\chi^2` involves summing over all terms. Then the sum is performed by substituting the variables by their respective data and summing all terms, while leaving the parameters symbolic. The resulting system of equations is then easily solved with ``sympy.solve``. :return: ``FitResult`` """ # Obtain the best fit params first. best_fit_params = self.best_fit_params() cov_matrix = self.covariance_matrix(best_fit_params=best_fit_params) self._fit_results = FitResults( model=self.model, popt=[best_fit_params[param] for param in self.model.params], covariance_matrix=cov_matrix, infodic={'nfev': 0}, mesg='', ier=0, ) self._fit_results.gof_qualifiers['r_squared'] = \ r_squared(self.model, self._fit_results, self.data) return self._fit_results
[docs]class NonLinearLeastSquares(BaseFit): """ Experimental. Implements non-linear least squares [wiki_nllsq]_. Works by a two step process: First the model is linearised by doing a first order taylor expansion around the guesses for the parameters. Then a LinearLeastSquares fit is performed. This is iterated until a fit of sufficient quality is obtained. Sensitive to good initial guesses. Providing good initial guesses is a must. .. [wiki_nllsq] https://en.wikipedia.org/wiki/Non-linear_least_squares """
[docs] def __init__(self, *args, **kwargs): super(NonLinearLeastSquares, self).__init__(*args, **kwargs) # Make an approximation of model at the initial guesses # self.model_appr = self.linearize(self.model, {p: p.value for p in self.model.params}) self.model_appr = TaylorModel(self.model) # Set initial expansion point self.model_appr.p0 = { param: value for param, value in zip(self.model_appr.params, self.initial_guesses) }
[docs] def execute(self, relative_error=1e-8, max_iter=500): """ Perform a non-linear least squares fit. :param relative_error: Relative error between the sum of squares of subsequent itterations. Once smaller than the value specified, the fit is considered complete. :param max_iter: Maximum number of iterations before giving up. :return: Instance of ``FitResults``. """ fit = LinearLeastSquares(self.model_appr, absolute_sigma=self.absolute_sigma, **key2str(self.data)) # if fit.is_linear(self.model): # return fit.execute() # else: i = 0 S_k1 = np.sum( self.model.numerical_chi_squared( *self.data.values(), **{p.name: float(value) for p, value in zip(self.model.params, self.initial_guesses)} ) ) while i < max_iter: fit_params = fit.best_fit_params() S_k2 = np.sum( self.model.numerical_chi_squared( *self.data.values(), **{p.name: float(value) for p, value in fit_params.items()} ) ) if not S_k1 < 0 and np.abs(S_k2 - S_k1) <= relative_error * np.abs(S_k1): break else: S_k1 = S_k2 # Update the model with a better approximation self.model_appr.p0 = fit_params i += 1 cov_matrix = fit.covariance_matrix(best_fit_params=fit_params) self._fit_results = FitResults( model=self.model, popt=[float(fit_params[param]) for param in self.model.params], covariance_matrix=cov_matrix, infodic={'nfev': i}, mesg='', ier=0, ) self._fit_results.gof_qualifiers['r_squared'] = \ r_squared(self.model, self._fit_results, self.data) return self._fit_results
[docs]class Fit(HasCovarianceMatrix): """ Your one stop fitting solution! Based on the nature of the input, this object will attempt to select the right fitting type for your problem. If you need very specific control over how the problem is solved, you can pass it the minimizer or objective function you would like to use. Example usage:: a, b = parameters('a, b') x, y = variables('x, y') model = {y: a * x + b} # Fit will use its default settings fit = Fit(model, x=xdata, y=ydata) fit_result = fit.execute() # Use Nelder-Mead instead fit = Fit(model, x=xdata, y=ydata, minimizer=NelderMead) fit_result = fit.execute() # Use Nelder-Mead to get close, and BFGS to polish it off fit = Fit(model, x=xdata, y=ydata, minimizer=[NelderMead, BFGS]) fit_result = fit.execute(minimizer_kwargs=[dict(xatol=0.1), {}]) """
[docs] @keywordonly(objective=None, minimizer=None, constraints=None) def __init__(self, model, *ordered_data, **named_data): """ :param model: (dict of) sympy expression(s) or ``Model`` object. :param constraints: iterable of ``Relation`` objects to be used as constraints. :param bool absolute_sigma: True by default. If the sigma is only used for relative weights in your problem, you could consider setting it to False, but if your sigma are measurement errors, keep it at True. Note that curve_fit has this set to False by default, which is wrong in experimental science. :param objective: Have Fit use your specified objective. Can be one of the predefined `symfit` objectives or any callable which accepts fit parameters and returns a scalar. :param minimizer: Have Fit use your specified :class:`symfit.core.minimizers.BaseMinimizer`. Can be a :class:`~collections.abc.Sequence` of :class:`symfit.core.minimizers.BaseMinimizer`. :param ordered_data: data for dependent, independent and sigma variables. Assigned in the following order: independent vars are assigned first, then dependent vars, then sigma's in dependent vars. Within each group they are assigned in alphabetical order. :param named_data: assign dependent, independent and sigma variables data by name. """ objective = named_data.pop('objective') minimizer = named_data.pop('minimizer') constraints = named_data.pop('constraints') super(Fit, self).__init__(model, *ordered_data, **named_data) # List of Constraint objects self.constraints = self._init_constraints(constraints=constraints) if objective is None: # Param only scalar Model -> the model is the objective. if len(self.model.independent_vars) == 0 and len(self.model) == 1: # No data provided means a simple minimization of the Model parameters # is requested, not a fit. if all(value is None for value in self.data.values()): objective = MinimizeModel elif minimizer is MINPACK: # MINPACK is considered a special snowflake, as its API has to be # considered seperately and has its own non standard objective function. objective = VectorLeastSquares if objective is None: objective = LeastSquares elif objective == LogLikelihood or isinstance(objective, LogLikelihood): if self.sigmas_provided: raise NotImplementedError( 'LogLikelihood fitting does not currently support data ' 'weights.' ) # Initialise the objective if it's not initialised already if isinstance(objective, BaseObjective): self.objective = objective else: self.objective = objective(self.model, self.data) # Select the minimizer on the basis of the provided information. if minimizer is None: minimizer = self._determine_minimizer() # Initialise the minimizer if isinstance(minimizer, Sequence): minimizers = [self._init_minimizer(mini) for mini in minimizer] self.minimizer = self._init_minimizer(ChainedMinimizer, minimizers=minimizers) else: self.minimizer = self._init_minimizer(minimizer)
def _determine_minimizer(self): """ Determine the most suitable minimizer by the presence of bounds or constraints. :return: a subclass of `BaseMinimizer`. """ if self.constraints: return SLSQP elif any([bound is not None for pair in self.model.bounds for bound in pair]): # If any bound is set return LBFGSB else: return BFGS def _init_minimizer(self, minimizer, **minimizer_options): """ Takes a :class:`~symfit.core.minimizers.BaseMinimizer` and instantiates it, passing the jacobian and constraints as appropriate for the minimizer. :param minimizer: :class:`~symfit.core.minimizers.BaseMinimizer` to instantiate. :param **minimizer_options: Further options to be passed to the minimizer on instantiation. :returns: instance of :class:`~symfit.core.minimizers.BaseMinimizer`. """ if isinstance(minimizer, BaseMinimizer): return minimizer if issubclass(minimizer, BasinHopping): minimizer_options['local_minimizer'] = self._init_minimizer( self._determine_minimizer() ) if issubclass(minimizer, GradientMinimizer): # If an analytical version of the Jacobian exists we should use # that, otherwise we let the minimizer estimate it itself. # Hence the check of numerical_jacobian, as this is the # py function version of the analytical jacobian. if hasattr(self.model, 'numerical_jacobian') and hasattr(self.objective, 'eval_jacobian'): minimizer_options['jacobian'] = self.objective.eval_jacobian if issubclass(minimizer, ConstrainedMinimizer): # Minimizers are agnostic about data, they just know about # objective functions. So we partial away the data at this point. minimizer_options['constraints'] = [ partial(constraint, **key2str(self.data)) for constraint in self.constraints ] return minimizer(self.objective, self.model.params, **minimizer_options) def _init_constraints(self, constraints): """ Takes the user provided constraints and converts them to a list of :class:`~symfit.core.fit.Constraint` objects. :param constraints: iterable of :class:`sympy.Relation` objects. :return: list of :class:`~symfit.core.fit.Constraint` objects. """ con_models = [] if constraints: for constraint in constraints: if isinstance(constraint, Constraint): con_models.append(constraint) else: con_models.append(Constraint(constraint, self.model)) # Check if the type of each constraint is allowed. allowed_types = [sympy.Eq, sympy.Ge, sympy.Le] for index in range(len(con_models)): constraint = con_models[index] if constraint.constraint_type not in allowed_types: raise ModelError( 'Only constraints of the type {} are allowed. A constraint' ' of type {} was provided.'.format(allowed_types, constraint.constraint_type) ) elif constraint.constraint_type is sympy.Le: assert len(constraint) == 1 for var in constraint: component = constraint[var] con_models[index] = Constraint( sympy.Ge(- component, 0), model=constraint.model ) return con_models
[docs] def execute(self, **minimize_options): """ Execute the fit. :param minimize_options: keyword arguments to be passed to the specified minimizer. :return: FitResults instance """ minimizer_ans = self.minimizer.execute(**minimize_options) try: # to build covariance matrix cov_matrix = minimizer_ans.covariance_matrix except AttributeError: cov_matrix = self.covariance_matrix(dict(zip(self.model.params, minimizer_ans._popt))) else: if cov_matrix is None: cov_matrix = self.covariance_matrix(dict(zip(self.model.params, minimizer_ans._popt))) finally: minimizer_ans.covariance_matrix = cov_matrix # Overwrite the DummyModel with the current model minimizer_ans.model = self.model minimizer_ans.gof_qualifiers['r_squared'] = r_squared(self.model, minimizer_ans, self.data) return minimizer_ans
# class LagrangeMultipliers: # """ # Class to analytically solve a function subject to constraints using Karush Kuhn Tucker. # http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions # """ # # def __init__(self, model, constraints): # self.model = model # # Seperate the constraints into equality and inequality constraint of the type <=. # self.equalities, self.lesser_thans = self.seperate_constraints(constraints) # self.model.vars, self.model.params = seperate_symbols(self.model) # # @property # @cache # def lagrangian(self): # L = self.model # # # Add equility constraints to the Lagrangian # for constraint, l_i in zip(self.equalities, self.l_params): # L += l_i * constraint # # # Add inequility constraints to the Lagrangian # for constraint, u_i in zip(self.lesser_thans, self.u_params): # L += u_i * constraint # # return L # # @property # @cache # def l_params(self): # """ # :return: Lagrange multipliers for every constraint. # """ # return [Parameter(name='l_{}'.format(index)) for index in range(len(self.equalities))] # # @property # @cache # def u_params(self): # """ # :return: Lagrange multipliers for every inequality constraint. # """ # return [Parameter(name='u_{}'.format(index)) for index in range(len(self.lesser_thans))] # # @property # @cache # def all_params(self): # """ # :return: All parameters. The convention is first the model parameters, # then lagrange multipliers for equality constraints, then inequility. # """ # return self.model.params + self.l_params + self.u_params # # @property # @cache # def extrema(self): # """ # :return: list namedtuples of all extrema of self.model, where value = f(x1, ..., xn). # """ # # Prepare the Extremum namedtuple for this number of variables. # field_names = [p.name for p in self.model.params] + ['value'] # Extremum = namedtuple('Extremum', field_names) # # # Calculate the function value at each solution. # values = [self.model.subs(sol) for sol in self.solutions] # # # Build the output list of namedtuples # extrema_list = [] # for value, solution in zip(values, self.solutions): # # Prepare an Extrumum tuple for every extremum. # ans = {'value': value} # for param in self.model.params: # ans[param.name] = solution[param] # extrema_list.append(Extremum(**ans)) # return extrema_list # # @property # @cache # def solutions(self): # """ # Do analytical optimization. This finds ALL solutions for the system. # Nomenclature: capital L is the Lagrangian, l the Lagrange multiplier. # :return: a list of dicts containing the values for all parameters, # including the Lagrange multipliers l_i and u_i. # """ # # primal feasibility; pretend they are all equality constraints. # grad_L = [sympy.diff(self.lagrangian, p) for p in self.all_params] # solutions = sympy.solve(grad_L, self.all_params, dict=True) # print(grad_L, solutions, self.all_params) # # if self.u_params: # # The smaller than constraints also have trivial solutions when u_i == 0. # # These are not automatically found by sympy in the previous process. # # Therefore we must now evaluate the gradient for these points manually. # u_zero = dict((u_i, 0) for u_i in self.u_params) # # We need to consider all combinations of u_i == 0 possible, of all lengths possible. # for number_of_zeros in range(1, len(u_zero) + 1): # for zeros in itertools.combinations(u_zero.items(), number_of_zeros): # zeros is a tuple of (Symbol, 0) tuples. # # get a unique set of symbols. # symbols = set(self.all_params) - set(symbol for symbol, _ in zeros) # # differentiate w.r.t. these symbols only. # relevant_grad_L = [sympy.diff(self.lagrangian, p) for p in symbols] # # solution = sympy.solve([grad.subs(zeros) for grad in relevant_grad_L], symbols, dict=True) # for item in solution: # item.update(zeros) # include the zeros themselves. # # solutions += solution # # return self.sanitise(solutions) # # def sanitise(self, solutions): # """ # Returns only solutions which are valid. This is an unfortunate consequence of the KKT method; # KKT parameters are not guaranteed to respect each other. However, it is easy to check this. # There are two things to check: # - all KKT parameters should be greater equal zero. # - all constraints should be met by the solutions. # :param solutions: a list of dicts, where each dict contains the coordinates of a saddle point of the lagrangian. # :return: bool # """ # # All the inequality multipliers u_i must be greater or equal 0 # final_solutions = [] # for saddle_point in solutions: # for u_i in self.u_params: # if saddle_point[u_i] < 0: # break # else: # final_solutions.append(saddle_point) # # # we have to dubble check all if all our conditions are met because # # This is not garanteed with inequility constraints. # solutions = [] # for solution in final_solutions: # for constraint in self.lesser_thans: # test = constraint.subs(solution) # if test > 0: # break # else: # solutions.append(solution) # # return solutions # # # # @staticmethod # def seperate_constraints(constraints): # """ # We follow the definitions given here: # http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions # # IMPORTANT: <= and < are considered the same! The same goes for > and >=. # Strict inequalities of the type != are not currently supported. # # :param constraints list: list of constraints. # :return: g_i are <= 0 constraints, h_j are equals 0 constraints. # """ # equalities = [] # lesser_thans = [] # for constraint in constraints: # if isinstance(constraint, sympy.Eq): # equalities.append(constraint.lhs - constraint.rhs) # elif isinstance(constraint, (sympy.Le, sympy.Lt)): # lesser_thans.append(constraint.lhs - constraint.rhs) # elif isinstance(constraint, (sympy.Ge, sympy.Gt)): # lesser_thans.append(-1 * (constraint.lhs - constraint.rhs)) # else: # raise TypeError('Constraints of type {} are not supported by this solver.'.format(type(constraint))) # return equalities, lesser_thans # # class ConstrainedFit(BaseFit): # """ # Finds the analytical best fit parameters, combining data with LagrangeMultipliers # for the best result, if available. # """ # def __init__(self, model, x, y, constraints=None, *args, **kwargs): # constraints = constraints if constraints is not None else [] # value = Variable() # chi2 = (model - value)**2 # self.analytic_fit = LagrangeMultipliers(chi2, constraints) # self.xdata = x # self.ydata = y # super(ConstrainedFit, self).__init__(chi2) # # def execute(self): # print('here:', self.analytic_fit.solutions) # import inspect # for extremum in self.analytic_fit.extrema: # popt, pcov = [], [] # for param in self.model.params: # # Retrieve the expression for this param. # expr = getattr(extremum, param.name) # py_expr = sympy_to_py(expr, self.model.vars, []) # values = py_expr(*self.xdata) # popt.append(np.average(values)) # pcov.append(np.var(values, ddof=len(self.model.vars))) # print(popt, pcov) # # residuals = self.scipy_func(self.xdata, popt) # # fit_results = FitResults( # params=self.model.params, # popt=popt, # pcov=pcov, # infodic={}, # mesg='', # ier=0, # r_squared=r_squared(residuals, self.ydata), # ) # print(fit_results) # print(self.analytic_fit.extrema) # # def error(self, p, func, x, y): # pass
[docs]def r_squared(model, fit_result, data): """ Calculates the coefficient of determination, R^2, for the fit. (Is not defined properly for vector valued functions.) :param model: Model instance :param fit_result: FitResults instance :param data: data with which the fit was performed. """ # First filter out the dependent vars y_is = [data[var] for var in model if var in data] x_is = [value for var, value in data.items() if var.name in model.__signature__.parameters] y_bars = [np.mean(y_i) if y_i is not None else None for y_i in y_is] f_is = model(*x_is, **fit_result.params) SS_res = np.sum([np.sum((y_i - f_i)**2) for y_i, f_i in zip(y_is, f_is) if y_i is not None]) SS_tot = np.sum([np.sum((y_i - y_bar)**2) for y_i, y_bar in zip(y_is, y_bars) if y_i is not None]) return 1 - SS_res/SS_tot
[docs]class ODEModel(CallableModel): """ Model build from a system of ODEs. When the model is called, the ODE is integrated using the LSODA package. """
[docs] def __init__(self, model_dict, initial, *lsoda_args, **lsoda_kwargs): """ :param model_dict: Dictionary specifying ODEs. e.g. model_dict = {D(y, x): a * x**2} :param initial: ``dict`` of initial conditions for the ODE. Must be provided! e.g. initial = {y: 1.0, x: 0.0} :param lsoda_args: args to pass to the lsoda solver. See `scipy's odeint <http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html>`_ for more info. :param lsoda_kwargs: kwargs to pass to the lsoda solver. """ self.initial = initial self.lsoda_args = lsoda_args self.lsoda_kwargs = lsoda_kwargs sort_func = lambda symbol: str(symbol) # Mapping from dependent vars to their derivatives self.dependent_derivatives = {d: list(d.free_symbols - set(d.variables))[0] for d in model_dict} self.dependent_vars = sorted( self.dependent_derivatives.values(), key=sort_func ) self.independent_vars = sorted(set(d.variables[0] for d in model_dict), key=sort_func) if not len(self.independent_vars): raise ModelError('ODEModel can only have one independent variable.') self.model_dict = OrderedDict( sorted( model_dict.items(), key=lambda i: sort_func(self.dependent_derivatives[i[0]]) ) ) # Extract all the params and vars as a sorted, unique list. expressions = model_dict.values() model_params = set([]) # Only the once's that have a Parameter as initial parameter. # self.initial_params = {value for var, value in self.initial.items() # if isinstance(value, Parameter)} for expression in expressions: vars, params = seperate_symbols(expression) model_params.update(params) # self.independent_vars.update(vars) # Although unique now, params and vars should be sorted alphabetically to prevent ambiguity self.params = sorted(model_params, key=sort_func) # self.params = sorted(self.model_params | self.initial_params, key=sort_func) # self.model_params = sorted(self.model_params, key=sort_func) # self.initial_params = sorted(self.initial_params, key=sort_func) # Make Variable object corresponding to each sigma var. self.sigmas = {var: Variable(name='sigma_{}'.format(var.name)) for var in self.dependent_vars} self.__signature__ = self._make_signature()
[docs] def __reduce__(self): if self.lsoda_kwargs: from pickle import PicklingError raise PicklingError( '{} with lsoda_kwargs can not be pickled.'.format(self.__class__) ) return ( self.__class__, tuple([self.model_dict, self.initial] + list(self.lsoda_args)) )
[docs] def __str__(self): """ Printable representation of this model. :return: str """ template = "{}; {}) = {}" parts = [] for var, expr in self.model_dict.items(): parts.append(template.format( str(var)[:-1], ", ".join(arg.name for arg in self.params), expr ) ) return "\n".join(parts)
[docs] def __getitem__(self, dependent_var): """ Gives the function defined for the derivative of ``dependent_var``. e.g. :math:`y' = f(y, t)`, model[y] -> f(y, t) :param dependent_var: :return: """ for d, f in self.model_dict.items(): if dependent_var == self.dependent_derivatives[d]: return f
[docs] def __iter__(self): """ :return: iterable over self.model_dict """ return iter(self.dependent_vars)
[docs] def __neg__(self): """ :return: new model with opposite sign. Does not change the model in-place, but returns a new copy. """ new_model_dict = self.model_dict.copy() for key in new_model_dict: new_model_dict[key] *= -1 return self.__class__(new_model_dict, initial=self.initial)
@cached_property def _ncomponents(self): """ :return: The `numerical_components` for an ODEModel. This differs from the traditional `numerical_components`, in that these component can also contain dependent variables, not just the independent ones. Each of these components does not correspond to e.g. `y(t) = ...`, but to `D(y, t) = ...`. The system spanned by these component therefore still needs to be integrated. """ return [sympy_to_py(expr, self.independent_vars + self.dependent_vars, self.params) for expr in self.values()] @cached_property def _njacobian(self): """ :return: The `numerical_jacobian` of the components of the ODEModel with regards to the dependent variables. This is not to be confused with the jacobian of the model as a whole, which is 2D and computed with regards to the dependent vars and the fit parameters, and the ODEModel still needs to integrated to compute that. Instead, this function is used by the ODE integrator, and is not meant for human consumption. """ return [ [sympy_to_py( sympy.diff(expr, var), self.independent_vars + self.dependent_vars, self.params ) for var in self.dependent_vars ] for _, expr in self.items() ]
[docs] def eval_components(self, *args, **kwargs): """ Numerically integrate the system of ODEs. :param args: Ordered arguments for the parameters and independent variables :param kwargs: Keyword arguments for the parameters and independent variables :return: """ bound_arguments = self.__signature__.bind(*args, **kwargs) t_like = bound_arguments.arguments[self.independent_vars[0].name] # System of functions to be integrated f = lambda ys, t, *a: [c(t, *(list(ys) + list(a))) for c in self._ncomponents] Dfun = lambda ys, t, *a: [[c(t, *(list(ys) + list(a))) for c in row] for row in self._njacobian] initial_dependent = [self.initial[var] for var in self.dependent_vars] t_initial = self.initial[self.independent_vars[0]] # Assuming there's only one # Check if the time-like data includes the initial value, because integration should start there. try: t_like[0] except (TypeError, IndexError): # Python scalar gives TypeError, numpy scalars IndexError t_like = np.array([t_like]) # Allow evaluation at one point. # The strategy is to split the time axis in a part above and below the # initial value, and to integrate those seperately. At the end we rejoin them. # np.flip is needed because odeint wants the first point to be t_initial # and so t_smaller is a declining series. if t_initial in t_like: t_bigger = t_like[t_like >= t_initial] t_smaller = t_like[t_like <= t_initial][::-1] else: t_bigger = np.concatenate( (np.array([t_initial]), t_like[t_like > t_initial]) ) t_smaller = np.concatenate( (np.array([t_initial]), t_like[t_like < t_initial][::-1]) ) # Properly ordered time axis containing t_initial t_total = np.concatenate((t_smaller[::-1][:-1], t_bigger)) ans_bigger = odeint( f, initial_dependent, t_bigger, args=tuple( bound_arguments.arguments[param.name] for param in self.params), Dfun=Dfun, *self.lsoda_args, **self.lsoda_kwargs ) ans_smaller = odeint( f, initial_dependent, t_smaller, args=tuple( bound_arguments.arguments[param.name] for param in self.params), Dfun=Dfun, *self.lsoda_args, **self.lsoda_kwargs ) ans = np.concatenate((ans_smaller[1:][::-1], ans_bigger)) if t_initial in t_like: # The user also requested to know the value at t_initial, so keep it. return ans.T else: # The user didn't ask for the value at t_initial, so exclude it. # (t_total contains all the t-points used for the integration, # and so is t_like with t_initial inserted at the right position). return ans[t_total != t_initial].T
[docs] def __call__(self, *args, **kwargs): """ Evaluate the model for a certain value of the independent vars and parameters. Signature for this function contains independent vars and parameters, NOT dependent and sigma vars. Can be called with both ordered and named parameters. Order is independent vars first, then parameters. Alphabetical order within each group. :param args: Ordered arguments for the parameters and independent variables :param kwargs: Keyword arguments for the parameters and independent variables :return: A namedtuple of all the dependent vars evaluated at the desired point. Will always return a tuple, even for scalar valued functions. This is done for consistency. """ bound_arguments = self.__signature__.bind(*args, **kwargs) Ans = namedtuple('Ans', [var.name for var in self]) ans = Ans(*self.eval_components(**bound_arguments.arguments)) return ans